optimized by deepseek
Browse files
app.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
-
import os
|
4 |
import shutil
|
5 |
import tempfile
|
6 |
import spaces
|
7 |
-
import torch
|
8 |
-
import os
|
9 |
-
import sys
|
10 |
|
11 |
print("Installing flash-attn...")
|
12 |
# Install flash attention
|
@@ -44,394 +41,211 @@ except FileNotFoundError:
|
|
44 |
|
45 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
46 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
import numpy as np
|
49 |
import json
|
50 |
from omegaconf import OmegaConf
|
51 |
import torchaudio
|
52 |
from torchaudio.transforms import Resample
|
53 |
import soundfile as sf
|
54 |
-
|
55 |
-
import uuid
|
56 |
from tqdm import tqdm
|
57 |
from einops import rearrange
|
|
|
58 |
from codecmanipulator import CodecManipulator
|
59 |
from mmtokenizer import _MMSentencePieceTokenizer
|
60 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
61 |
-
import glob
|
62 |
-
import time
|
63 |
-
import copy
|
64 |
-
from collections import Counter
|
65 |
-
from models.soundstream_hubert_new import SoundStream
|
66 |
-
from vocoder import build_codec_model, process_audio
|
67 |
-
from post_process_audio import replace_low_freq_with_energy_matched
|
68 |
import re
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
files = os.listdir(output_dir)
|
75 |
-
|
76 |
-
# Iterate over the files and remove them
|
77 |
-
for file in files:
|
78 |
-
file_path = os.path.join(output_dir, file)
|
79 |
-
try:
|
80 |
-
if os.path.isdir(file_path):
|
81 |
-
# If it's a directory, remove it recursively
|
82 |
-
shutil.rmtree(file_path)
|
83 |
-
else:
|
84 |
-
# If it's a file, delete it
|
85 |
-
os.remove(file_path)
|
86 |
-
except Exception as e:
|
87 |
-
print(f"Error deleting file {file_path}: {e}")
|
88 |
|
89 |
-
#
|
90 |
-
def
|
91 |
-
|
92 |
-
# Ensure content ends with newline and normalize line endings
|
93 |
-
content = content.strip() + "\n\n" # Add extra newline at end
|
94 |
-
content = content.replace("\r\n", "\n").replace("\r", "\n")
|
95 |
-
temp_file.write(content)
|
96 |
-
temp_file.close()
|
97 |
-
|
98 |
-
# Debug: Print file contents
|
99 |
-
print(f"\nContent written to {prefix}{suffix}:")
|
100 |
-
print(content)
|
101 |
-
print("---")
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
|
109 |
-
#
|
110 |
-
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
115 |
|
116 |
-
#
|
117 |
-
|
118 |
|
119 |
-
#
|
120 |
-
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
|
|
135 |
def generate_music(
|
136 |
-
stage1_model="m-a-p/YuE-s1-7B-anneal-en-cot",
|
137 |
-
max_new_tokens=3000,
|
138 |
-
run_n_segments=2,
|
139 |
genre_txt=None,
|
140 |
lyrics_txt=None,
|
|
|
|
|
141 |
use_audio_prompt=False,
|
142 |
audio_prompt_path="",
|
143 |
prompt_start_time=0.0,
|
144 |
prompt_end_time=30.0,
|
145 |
output_dir="./output",
|
146 |
keep_intermediate=False,
|
147 |
-
disable_offload_model=False,
|
148 |
-
cuda_idx=0,
|
149 |
-
basic_model_config='./xcodec_mini_infer/final_ckpt/config.yaml',
|
150 |
-
resume_path='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth',
|
151 |
-
config_path='./xcodec_mini_infer/decoders/config.yaml',
|
152 |
-
vocal_decoder_path='./xcodec_mini_infer/decoders/decoder_131000.pth',
|
153 |
-
inst_decoder_path='./xcodec_mini_infer/decoders/decoder_151000.pth',
|
154 |
rescale=False,
|
155 |
):
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
model = stage1_model
|
160 |
-
cuda_idx = cuda_idx
|
161 |
-
max_new_tokens = max_new_tokens
|
162 |
-
stage1_output_dir = os.path.join(output_dir, f"stage1")
|
163 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
codectool = CodecManipulator("xcodec", 0, 1)
|
168 |
-
model_config = OmegaConf.load(basic_model_config)
|
169 |
-
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
170 |
-
parameter_dict = torch.load(resume_path, map_location='cpu')
|
171 |
-
codec_model.load_state_dict(parameter_dict['codec_model'])
|
172 |
-
codec_model.to(device)
|
173 |
-
codec_model.eval()
|
174 |
-
|
175 |
-
class BlockTokenRangeProcessor(LogitsProcessor):
|
176 |
-
def __init__(self, start_id, end_id):
|
177 |
-
self.blocked_token_ids = list(range(start_id, end_id))
|
178 |
-
|
179 |
-
def __call__(self, input_ids, scores):
|
180 |
-
scores[:, self.blocked_token_ids] = -float("inf")
|
181 |
-
return scores
|
182 |
-
|
183 |
-
def load_audio_mono(filepath, sampling_rate=16000):
|
184 |
-
audio, sr = torchaudio.load(filepath)
|
185 |
-
# Convert to mono
|
186 |
-
audio = torch.mean(audio, dim=0, keepdim=True)
|
187 |
-
# Resample if needed
|
188 |
-
if sr != sampling_rate:
|
189 |
-
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
190 |
-
audio = resampler(audio)
|
191 |
-
return audio
|
192 |
-
|
193 |
-
def split_lyrics(lyrics: str):
|
194 |
-
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
195 |
-
segments = re.findall(pattern, lyrics, re.DOTALL)
|
196 |
-
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
197 |
-
return structured_lyrics
|
198 |
-
|
199 |
-
# Call the function and print the result
|
200 |
-
stage1_output_set = []
|
201 |
-
|
202 |
genres = genre_txt.strip()
|
203 |
lyrics = split_lyrics(lyrics_txt+"\n")
|
204 |
-
# intruction
|
205 |
full_lyrics = "\n".join(lyrics)
|
206 |
-
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
207 |
-
prompt_texts += lyrics
|
208 |
-
|
209 |
-
|
210 |
random_id = uuid.uuid4()
|
211 |
-
output_seq = None
|
212 |
-
# Here is suggested decoding config
|
213 |
-
top_p = 0.93
|
214 |
-
temperature = 1.0
|
215 |
-
repetition_penalty = 1.2
|
216 |
-
# special tokens
|
217 |
-
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
218 |
-
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
219 |
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
-
#
|
223 |
run_n_segments = min(run_n_segments+1, len(lyrics))
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
|
240 |
-
# Format audio prompt
|
241 |
-
code_ids = codectool.npy2ids(raw_codes[0])
|
242 |
-
audio_prompt_codec = code_ids[int(prompt_start_time *50): int(prompt_end_time *50)] # 50 is tps of xcodec
|
243 |
-
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
|
244 |
-
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
|
245 |
-
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
246 |
else:
|
247 |
-
|
248 |
-
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
249 |
-
else:
|
250 |
-
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
258 |
-
input_ids = input_ids[:, -(max_context):]
|
259 |
-
with torch.no_grad():
|
260 |
output_seq = model.generate(
|
261 |
-
input_ids=input_ids,
|
262 |
-
max_new_tokens=max_new_tokens,
|
263 |
-
min_new_tokens=100,
|
264 |
-
do_sample=True,
|
265 |
-
top_p=
|
266 |
-
temperature=
|
267 |
-
repetition_penalty=
|
268 |
eos_token_id=mmtokenizer.eoa,
|
269 |
pad_token_id=mmtokenizer.eoa,
|
270 |
-
logits_processor=LogitsProcessorList([
|
|
|
|
|
|
|
271 |
guidance_scale=guidance_scale,
|
272 |
-
|
273 |
-
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
274 |
-
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
275 |
-
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
276 |
-
if i > 1:
|
277 |
-
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
278 |
-
else:
|
279 |
-
raw_output = output_seq
|
280 |
-
print(len(raw_output))
|
281 |
|
282 |
-
#
|
283 |
-
ids =
|
284 |
-
soa_idx = np.where(ids == mmtokenizer.soa)[0]
|
285 |
-
eoa_idx = np.where(ids == mmtokenizer.eoa)[0]
|
286 |
-
|
287 |
-
|
|
|
|
|
|
|
|
|
288 |
|
289 |
-
|
290 |
-
instrumentals = []
|
291 |
-
range_begin = 1 if
|
|
|
292 |
for i in range(range_begin, len(soa_idx)):
|
293 |
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
vocals.append(
|
299 |
-
|
300 |
-
|
301 |
-
vocals = np.concatenate(
|
302 |
-
instrumentals = np.concatenate(instrumentals, axis=1)
|
303 |
-
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy')
|
304 |
-
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy')
|
305 |
-
np.save(vocal_save_path, vocals)
|
306 |
-
np.save(inst_save_path, instrumentals)
|
307 |
-
stage1_output_set.append(vocal_save_path)
|
308 |
-
stage1_output_set.append(inst_save_path)
|
309 |
-
|
310 |
-
|
311 |
-
# offload model
|
312 |
-
if not disable_offload_model:
|
313 |
-
model.cpu()
|
314 |
-
del model
|
315 |
-
torch.cuda.empty_cache()
|
316 |
-
|
317 |
-
print("Converting to Audio...")
|
318 |
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
os.makedirs(folder_path)
|
324 |
-
limit = 0.99
|
325 |
-
max_val = wav.abs().max()
|
326 |
-
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
327 |
-
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
328 |
-
# reconstruct tracks
|
329 |
-
recons_output_dir = os.path.join(output_dir, "recons")
|
330 |
-
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
331 |
-
os.makedirs(recons_mix_dir, exist_ok=True)
|
332 |
-
tracks = []
|
333 |
-
for npy in stage1_output_set:
|
334 |
-
codec_result = np.load(npy)
|
335 |
-
decodec_rlt=[]
|
336 |
-
with torch.no_grad():
|
337 |
-
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
|
338 |
-
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
339 |
-
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
340 |
-
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
341 |
-
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
342 |
-
tracks.append(save_path)
|
343 |
-
save_audio(decodec_rlt, save_path, 16000)
|
344 |
-
# mix tracks
|
345 |
-
for inst_path in tracks:
|
346 |
-
try:
|
347 |
-
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
|
348 |
-
and 'instrumental' in inst_path:
|
349 |
-
# find pair
|
350 |
-
vocal_path = inst_path.replace('instrumental', 'vocal')
|
351 |
-
if not os.path.exists(vocal_path):
|
352 |
-
continue
|
353 |
-
# mix
|
354 |
-
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
|
355 |
-
vocal_stem, sr = sf.read(inst_path)
|
356 |
-
instrumental_stem, _ = sf.read(vocal_path)
|
357 |
-
mix_stem = (vocal_stem + instrumental_stem) / 1
|
358 |
-
sf.write(recons_mix, mix_stem, sr)
|
359 |
-
except Exception as e:
|
360 |
-
print(e)
|
361 |
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
vocoder_output_dir = os.path.join(output_dir, 'vocoder')
|
366 |
-
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
|
367 |
-
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
|
368 |
-
os.makedirs(vocoder_mix_dir, exist_ok=True)
|
369 |
-
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
370 |
-
instrumental_output = None
|
371 |
-
vocal_output = None
|
372 |
-
for npy in stage1_output_set:
|
373 |
-
if 'instrumental' in npy:
|
374 |
-
# Process instrumental
|
375 |
-
instrumental_output = process_audio(
|
376 |
-
npy,
|
377 |
-
os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
|
378 |
-
rescale,
|
379 |
-
argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace
|
380 |
-
inst_decoder,
|
381 |
-
codec_model
|
382 |
-
)
|
383 |
-
else:
|
384 |
-
# Process vocal
|
385 |
-
vocal_output = process_audio(
|
386 |
-
npy,
|
387 |
-
os.path.join(vocoder_stems_dir, 'vocal.mp3'),
|
388 |
-
rescale,
|
389 |
-
argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace
|
390 |
-
vocal_decoder,
|
391 |
-
codec_model
|
392 |
-
)
|
393 |
-
# mix tracks
|
394 |
-
try:
|
395 |
-
mix_output = instrumental_output + vocal_output
|
396 |
-
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
|
397 |
-
save_audio(mix_output, vocoder_mix, 44100, rescale)
|
398 |
-
print(f"Created mix: {vocoder_mix}")
|
399 |
-
except RuntimeError as e:
|
400 |
-
print(e)
|
401 |
-
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
|
402 |
-
|
403 |
-
# Post process
|
404 |
-
replace_low_freq_with_energy_matched(
|
405 |
-
a_file=recons_mix, # 16kHz
|
406 |
-
b_file=vocoder_mix, # 48kHz
|
407 |
-
c_file=os.path.join(output_dir, os.path.basename(recons_mix)),
|
408 |
-
cutoff_freq=5500.0
|
409 |
-
)
|
410 |
-
print("All process Done")
|
411 |
-
return recons_mix
|
412 |
-
|
413 |
-
|
414 |
-
@spaces.GPU(duration=120)
|
415 |
-
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=200):
|
416 |
-
|
417 |
-
# Ensure the output folder exists
|
418 |
-
output_dir = "./output"
|
419 |
-
os.makedirs(output_dir, exist_ok=True)
|
420 |
-
print(f"Output folder ensured at: {output_dir}")
|
421 |
-
|
422 |
-
empty_output_folder(output_dir)
|
423 |
|
424 |
-
#
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
# Clean up temporary files
|
434 |
-
print("Temporary files deleted.")
|
435 |
|
436 |
# Gradio
|
437 |
|
|
|
1 |
import gradio as gr
|
2 |
import subprocess
|
3 |
+
import os
|
4 |
import shutil
|
5 |
import tempfile
|
6 |
import spaces
|
|
|
|
|
|
|
7 |
|
8 |
print("Installing flash-attn...")
|
9 |
# Install flash attention
|
|
|
41 |
|
42 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
43 |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
44 |
+
|
45 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
46 |
+
import torch
|
47 |
+
from huggingface_hub import snapshot_download
|
48 |
+
import sys
|
49 |
+
import uuid
|
50 |
import numpy as np
|
51 |
import json
|
52 |
from omegaconf import OmegaConf
|
53 |
import torchaudio
|
54 |
from torchaudio.transforms import Resample
|
55 |
import soundfile as sf
|
|
|
|
|
56 |
from tqdm import tqdm
|
57 |
from einops import rearrange
|
58 |
+
import time
|
59 |
from codecmanipulator import CodecManipulator
|
60 |
from mmtokenizer import _MMSentencePieceTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
import re
|
62 |
|
63 |
+
# Configuration Constants
|
64 |
+
MAX_NEW_TOKENS = 3000
|
65 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
66 |
+
MODEL_NAME = "m-a-p/YuE-s1-7B-anneal-en-cot"
|
67 |
+
CODEC_CONFIG_PATH = './xcodec_mini_infer/final_ckpt/config.yaml'
|
68 |
+
CODEC_CKPT_PATH = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
|
69 |
|
70 |
+
# Global Initialization
|
71 |
+
is_shared_ui = "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Preload models and components
|
74 |
+
def load_models():
|
75 |
+
print("Initializing models...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# Load main model
|
78 |
+
model = AutoModelForCausalLM.from_pretrained(
|
79 |
+
MODEL_NAME,
|
80 |
+
torch_dtype=torch.float16,
|
81 |
+
attn_implementation="flash_attention_2",
|
82 |
+
).to(DEVICE).eval()
|
83 |
|
84 |
+
# Load tokenizer
|
85 |
+
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
86 |
|
87 |
+
# Load codec model
|
88 |
+
model_config = OmegaConf.load(CODEC_CONFIG_PATH)
|
89 |
+
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(DEVICE)
|
90 |
+
parameter_dict = torch.load(CODEC_CKPT_PATH, map_location='cpu')
|
91 |
+
codec_model.load_state_dict(parameter_dict['codec_model'])
|
92 |
+
codec_model.eval()
|
93 |
|
94 |
+
# Initialize codec tools
|
95 |
+
codectool = CodecManipulator("xcodec", 0, 1)
|
96 |
|
97 |
+
# Precompute token IDs
|
98 |
+
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
99 |
+
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
100 |
|
101 |
+
return model, mmtokenizer, codec_model, codectool, start_of_segment, end_of_segment
|
102 |
+
|
103 |
+
# Preload all models and components
|
104 |
+
model, mmtokenizer, codec_model, codectool, start_of_segment, end_of_segment = load_models()
|
105 |
+
|
106 |
+
# Audio processing cache
|
107 |
+
resampler_cache = {}
|
108 |
+
def get_resampler(orig_freq, new_freq):
|
109 |
+
key = (orig_freq, new_freq)
|
110 |
+
if key not in resampler_cache:
|
111 |
+
resampler_cache[key] = Resample(orig_freq=orig_freq, new_freq=new_freq).to(DEVICE)
|
112 |
+
return resampler_cache[key]
|
113 |
+
|
114 |
+
def load_audio_mono(filepath, sampling_rate=16000):
|
115 |
+
audio, sr = torchaudio.load(filepath)
|
116 |
+
audio = torch.mean(audio, dim=0, keepdim=True).to(DEVICE)
|
117 |
+
if sr != sampling_rate:
|
118 |
+
resampler = get_resampler(sr, sampling_rate)
|
119 |
+
audio = resampler(audio)
|
120 |
+
return audio
|
121 |
|
122 |
+
@spaces.GPU(duration=120)
|
123 |
def generate_music(
|
|
|
|
|
|
|
124 |
genre_txt=None,
|
125 |
lyrics_txt=None,
|
126 |
+
max_new_tokens=3000,
|
127 |
+
run_n_segments=2,
|
128 |
use_audio_prompt=False,
|
129 |
audio_prompt_path="",
|
130 |
prompt_start_time=0.0,
|
131 |
prompt_end_time=30.0,
|
132 |
output_dir="./output",
|
133 |
keep_intermediate=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
rescale=False,
|
135 |
):
|
136 |
+
# Create output directories once
|
137 |
+
os.makedirs(output_dir, exist_ok=True)
|
138 |
+
stage1_output_dir = os.path.join(output_dir, "stage1")
|
|
|
|
|
|
|
|
|
139 |
os.makedirs(stage1_output_dir, exist_ok=True)
|
140 |
|
141 |
+
# Process inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
genres = genre_txt.strip()
|
143 |
lyrics = split_lyrics(lyrics_txt+"\n")
|
|
|
144 |
full_lyrics = "\n".join(lyrics)
|
145 |
+
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] + lyrics
|
|
|
|
|
|
|
146 |
random_id = uuid.uuid4()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
# Audio prompt processing
|
149 |
+
audio_prompt_codec_ids = []
|
150 |
+
if use_audio_prompt:
|
151 |
+
if not audio_prompt_path:
|
152 |
+
raise FileNotFoundError("Audio prompt path required when using audio prompt!")
|
153 |
+
|
154 |
+
audio_prompt = load_audio_mono(audio_prompt_path)
|
155 |
+
with torch.inference_mode():
|
156 |
+
raw_codes = codec_model.encode(audio_prompt.unsqueeze(0), target_bw=0.5)
|
157 |
+
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
|
158 |
+
|
159 |
+
code_ids = codectool.npy2ids(raw_codes[0])
|
160 |
+
audio_prompt_codec = code_ids[int(prompt_start_time*50):int(prompt_end_time*50)]
|
161 |
+
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
|
162 |
|
163 |
+
# Generation loop optimization
|
164 |
run_n_segments = min(run_n_segments+1, len(lyrics))
|
165 |
+
output_seq = None
|
166 |
+
|
167 |
+
with torch.inference_mode():
|
168 |
+
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
169 |
+
if i == 0: continue # Skip system prompt
|
170 |
+
|
171 |
+
# Prepare prompt
|
172 |
+
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
173 |
+
guidance_scale = 1.5 if i <= 1 else 1.2
|
174 |
+
|
175 |
+
if i == 1:
|
176 |
+
prompt_ids = mmtokenizer.tokenize(prompt_texts[0])
|
177 |
+
if use_audio_prompt:
|
178 |
+
prompt_ids += mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
|
179 |
+
prompt_ids += start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
else:
|
181 |
+
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
|
|
|
|
|
|
182 |
|
183 |
+
# Process input sequence
|
184 |
+
prompt_ids = torch.tensor(prompt_ids, device=DEVICE).unsqueeze(0)
|
185 |
+
input_ids = torch.cat([output_seq, prompt_ids], dim=1) if i > 1 else prompt_ids
|
186 |
+
|
187 |
+
# Generate sequence
|
|
|
|
|
|
|
188 |
output_seq = model.generate(
|
189 |
+
input_ids=input_ids,
|
190 |
+
max_new_tokens=max_new_tokens,
|
191 |
+
min_new_tokens=100,
|
192 |
+
do_sample=True,
|
193 |
+
top_p=0.93,
|
194 |
+
temperature=1.0,
|
195 |
+
repetition_penalty=1.2,
|
196 |
eos_token_id=mmtokenizer.eoa,
|
197 |
pad_token_id=mmtokenizer.eoa,
|
198 |
+
logits_processor=LogitsProcessorList([
|
199 |
+
BlockTokenRangeProcessor(0, 32002),
|
200 |
+
BlockTokenRangeProcessor(32016, 32016)
|
201 |
+
]),
|
202 |
guidance_scale=guidance_scale,
|
203 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
# Post-processing optimization
|
206 |
+
ids = output_seq[0].cpu().numpy()
|
207 |
+
soa_idx = np.where(ids == mmtokenizer.soa)[0]
|
208 |
+
eoa_idx = np.where(ids == mmtokenizer.eoa)[0]
|
209 |
+
|
210 |
+
# Vectorized audio processing
|
211 |
+
vocals, instrumentals = process_audio_segments(ids, soa_idx, eoa_idx, codectool)
|
212 |
+
|
213 |
+
# Save and mix audio
|
214 |
+
return save_and_mix_audio(vocals, instrumentals, genres, random_id, output_dir)
|
215 |
|
216 |
+
def process_audio_segments(ids, soa_idx, eoa_idx, codectool):
|
217 |
+
vocals, instrumentals = [], []
|
218 |
+
range_begin = 1 if len(soa_idx) > len(eoa_idx) else 0
|
219 |
+
|
220 |
for i in range(range_begin, len(soa_idx)):
|
221 |
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
|
222 |
+
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
|
223 |
+
|
224 |
+
# Vectorized processing
|
225 |
+
arr = rearrange(codec_ids, "(n b) -> b n", b=2)
|
226 |
+
vocals.append(codectool.ids2npy(arr[0]))
|
227 |
+
instrumentals.append(codectool.ids2npy(arr[1]))
|
228 |
+
|
229 |
+
return np.concatenate(vocals, axis=1), np.concatenate(instrumentals, axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
+
def save_and_mix_audio(vocals, instrumentals, genres, random_id, output_dir):
|
232 |
+
# Save directly to memory buffers
|
233 |
+
vocal_buf = torch.as_tensor(vocals.astype(np.int16), device=DEVICE)
|
234 |
+
inst_buf = torch.as_tensor(instrumentals.astype(np.int16), device=DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
+
with torch.inference_mode():
|
237 |
+
vocal_wav = codec_model.decode(vocal_buf.unsqueeze(0).permute(1, 0, 2))
|
238 |
+
inst_wav = codec_model.decode(inst_buf.unsqueeze(0).permute(1, 0, 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
# Mix directly in GPU memory
|
241 |
+
mixed = (vocal_wav + inst_wav) / 2
|
242 |
+
mixed = mixed.squeeze(0).cpu().numpy()
|
243 |
+
|
244 |
+
# Save final output
|
245 |
+
output_path = os.path.join(output_dir, f"mixed_{genres}_{random_id}.mp3")
|
246 |
+
sf.write(output_path, mixed.T, 16000)
|
247 |
+
|
248 |
+
return output_path
|
|
|
|
|
249 |
|
250 |
# Gradio
|
251 |
|