File size: 12,650 Bytes
6c02161 b2d8a8c 15059e3 b2d8a8c 6df3b9e 649509e 60eb847 51043fd b2d8a8c 6b78ccb 98d025d 15059e3 472d32d c022c1a 472d32d c022c1a 472d32d c022c1a 9df60ba c022c1a 15059e3 c022c1a 9df60ba 472d32d 22e7225 6b78ccb 858dd79 51043fd 858dd79 649509e 6b78ccb 649509e 6b78ccb 649509e 6b78ccb 649509e 01bd804 649509e 01bd804 10f6d5f a02a3fd 649509e 10f6d5f 649509e 15059e3 649509e 10f6d5f 15059e3 fa7e403 e2fefec 10f6d5f 858dd79 10f6d5f 858dd79 e2fefec 75625eb 10f6d5f 51043fd 10f6d5f 649509e 10f6d5f 3037e6c 10f6d5f 70e83e0 858dd79 51043fd 649509e 10f6d5f 5bb3bd1 10f6d5f 15059e3 649509e 10f6d5f 649509e 15059e3 649509e 5bb3bd1 15059e3 649509e 6487baf 80351f0 649509e 15059e3 649509e 8cd422c 649509e 15059e3 6487baf 649509e 15059e3 725074b 15059e3 725074b 10f6d5f 15059e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import torch
import sys
import uuid
import re
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'
# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./xcodec_mini_infer"
)
# Change to the "inference" directory
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
# don't change above code
import argparse
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
# Initialize device
device = "cuda:0"
# Load models once and reuse
print("Loading models...")
model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s1-7B-anneal-en-cot",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(device).eval()
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
config_path = './xcodec_mini_infer/decoders/config.yaml'
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
# Load codec model
model_config = OmegaConf.load(basic_model_config)
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
codec_model.load_state_dict(torch.load(resume_path, map_location='cpu')['codec_model'])
codec_model.eval()
# Preload and compile vocoders
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
vocal_decoder.to(device).eval()
inst_decoder.to(device).eval()
# Tokenizer and codec tool
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
def generate_music(genre_txt, lyrics_txt, max_new_tokens=5, run_n_segments=2, use_audio_prompt=False, audio_prompt_path="", prompt_start_time=0.0, prompt_end_time=30.0, rescale=False):
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError("Please provide an audio prompt filepath when enabling 'use_audio_prompt'!")
max_new_tokens *= 100
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
# Split lyrics into segments
def split_lyrics(lyrics):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
return [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
lyrics = split_lyrics(lyrics_txt + "\n")
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genre_txt.strip()}\n{full_lyrics}"] + lyrics
raw_output = None
stage1_output_set = []
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <= 1 else 1.2
if i == 0:
continue
if i == 1 and use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt = audio_prompt.unsqueeze(0).to(device)
raw_codes = codec_model.encode(audio_prompt, target_bw=0.5).transpose(0, 1).cpu().numpy().astype(np.int16)
audio_prompt_codec = codectool.npy2ids(raw_codes[0])[int(prompt_start_time * 50): int(prompt_end_time * 50)]
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
max_context = 16384 - max_new_tokens - 1
if input_ids.shape[-1] > max_context:
input_ids = input_ids[:, -(max_context):]
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([
BlockTokenRangeProcessor(0, 32002),
BlockTokenRangeProcessor(32016, 32016)
]),
guidance_scale=guidance_scale,
use_cache=True,
top_k=50,
num_beams=1
)
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) if i > 1 else output_seq
# Process and save outputs
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
vocals, instrumentals = [], []
for i in range(len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0]))
instrumentals.append(codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1]))
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
# Decode and mix audio
decoded_vocals = codec_model.decode(torch.as_tensor(vocals.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)).cpu().squeeze(0)
decoded_instrumentals = codec_model.decode(torch.as_tensor(instrumentals.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device)).cpu().squeeze(0)
mixed_audio = (decoded_vocals + decoded_instrumentals) / 2
mixed_audio_np = mixed_audio.detach().numpy() # Convert to NumPy array
mixed_audio_int16 = (mixed_audio_np * 32767).astype(np.int16) # Convert to int16
# Return the sample rate and the converted audio data
return (16000, mixed_audio_int16)
@spaces.GPU(duration=120)
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=10):
try:
return generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, max_new_tokens=max_new_tokens)
except Exception as e:
gr.Warning("An Error Occurred: " + str(e))
return None
# Gradio Interface
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=5,
interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Audio Result")
# gr.Examples(
# examples=[
# ["Rap, Hip-Hop, Street Vibes, Tough, Piercing Vocals, Piano, Synthesizer, Clear Male Vocals",
# """[verse]
# Woke up in the morning, sun is shining bright
# Chasing all my dreams, gotta get my mind right
# City lights are fading, but my vision's clear
# Got my team beside me, no room for fear
# Walking through the streets, beats inside my head
# Every step I take, closer to the bread
# People passing by, they don't understand
# Building up my future with my own two hands
# """],
# ],
# inputs=[genre_txt, lyrics_txt],
# outputs=[music_out],
# cache_examples=True,
# cache_mode="eager",
# fn=infer
# )
gr.Examples(
examples=[
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out],
cache_examples=True,
cache_mode="eager",
fn=infer
)
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out]
)
demo.queue().launch(show_error=True) |