File size: 12,490 Bytes
6c02161 b2d8a8c f46ec29 b2d8a8c 6df3b9e 60eb847 b2d8a8c 6b78ccb 98d025d 472d32d c022c1a 472d32d c022c1a 472d32d c022c1a 9df60ba c022c1a 9df60ba 472d32d 22e7225 6b78ccb f46ec29 6b78ccb f46ec29 6b78ccb f46ec29 6b78ccb f46ec29 22e7225 f46ec29 472d32d f46ec29 472d32d 5b10475 f46ec29 5b10475 f46ec29 472d32d f46ec29 c022c1a 472d32d 91ea958 f46ec29 c022c1a 5b10475 8af62c1 f46ec29 472d32d f46ec29 c022c1a f46ec29 c022c1a f46ec29 472d32d f46ec29 c022c1a f46ec29 725074b f46ec29 c022c1a f46ec29 c022c1a f46ec29 c022c1a f46ec29 c022c1a f46ec29 c022c1a f46ec29 c022c1a f46ec29 c022c1a f46ec29 472d32d f46ec29 472d32d f46ec29 472d32d f46ec29 472d32d c022c1a 472d32d b2d8a8c 725074b c022c1a 725074b c022c1a 725074b c022c1a 725074b 472d32d 725074b c022c1a 725074b b2d8a8c 725074b b2d8a8c 725074b b8a38aa 725074b c022c1a 91ea958 725074b c022c1a 725074b 91ea958 c022c1a 725074b 6ec1c18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import sys
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'
# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id = "m-a-p/xcodec_mini_infer",
local_dir = "./xcodec_mini_infer"
)
# Change to the "inference" directory
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import torch
from huggingface_hub import snapshot_download
import sys
import uuid
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
import time
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
import re
# Configuration Constants
MAX_NEW_TOKENS = 3000
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_NAME = "m-a-p/YuE-s1-7B-anneal-en-cot"
CODEC_CONFIG_PATH = './xcodec_mini_infer/final_ckpt/config.yaml'
CODEC_CKPT_PATH = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
# Global Initialization
is_shared_ui = "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '')
# Preload models and components
def load_models():
print("Initializing models...")
# Load main model
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
).to(DEVICE).eval()
return model
# Preload all models and components
model = load_models()
# Audio processing cache
resampler_cache = {}
def get_resampler(orig_freq, new_freq):
key = (orig_freq, new_freq)
if key not in resampler_cache:
resampler_cache[key] = Resample(orig_freq=orig_freq, new_freq=new_freq).to(DEVICE)
return resampler_cache[key]
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
audio = torch.mean(audio, dim=0, keepdim=True).to(DEVICE)
if sr != sampling_rate:
resampler = get_resampler(sr, sampling_rate)
audio = resampler(audio)
return audio
@spaces.GPU(duration=120)
def generate_music(
genre_txt=None,
lyrics_txt=None,
max_new_tokens=100,
run_n_segments=2,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
output_dir="./output",
keep_intermediate=False,
rescale=False,
):
# Load tokenizer
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
# Precompute token IDs
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
# Load codec model
model_config = OmegaConf.load(CODEC_CONFIG_PATH)
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(DEVICE)
parameter_dict = torch.load(CODEC_CKPT_PATH, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
codec_model.eval()
# Initialize codec tools
codectool = CodecManipulator("xcodec", 0, 1)
# Create output directories once
os.makedirs(output_dir, exist_ok=True)
stage1_output_dir = os.path.join(output_dir, "stage1")
os.makedirs(stage1_output_dir, exist_ok=True)
# Process inputs
genres = genre_txt.strip()
lyrics = split_lyrics(lyrics_txt+"\n")
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] + lyrics
random_id = uuid.uuid4()
# Audio prompt processing
audio_prompt_codec_ids = []
if use_audio_prompt:
if not audio_prompt_path:
raise FileNotFoundError("Audio prompt path required when using audio prompt!")
audio_prompt = load_audio_mono(audio_prompt_path)
with torch.inference_mode():
raw_codes = codec_model.encode(audio_prompt.unsqueeze(0), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(prompt_start_time*50):int(prompt_end_time*50)]
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
# Generation loop optimization
run_n_segments = min(run_n_segments+1, len(lyrics))
output_seq = None
with torch.inference_mode():
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
if i == 0: continue # Skip system prompt
# Prepare prompt
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <= 1 else 1.2
if i == 1:
prompt_ids = mmtokenizer.tokenize(prompt_texts[0])
if use_audio_prompt:
prompt_ids += mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
prompt_ids += start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
# Process input sequence
prompt_ids = torch.tensor(prompt_ids, device=DEVICE).unsqueeze(0)
input_ids = torch.cat([output_seq, prompt_ids], dim=1) if i > 1 else prompt_ids
# Generate sequence
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=0.93,
temperature=1.0,
repetition_penalty=1.2,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([
BlockTokenRangeProcessor(0, 32002),
BlockTokenRangeProcessor(32016, 32016)
]),
guidance_scale=guidance_scale,
)
# Post-processing optimization
ids = output_seq[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0]
eoa_idx = np.where(ids == mmtokenizer.eoa)[0]
# Vectorized audio processing
vocals, instrumentals = process_audio_segments(ids, soa_idx, eoa_idx, codectool)
# Save and mix audio
return save_and_mix_audio(vocals, instrumentals, genres, random_id, output_dir)
def process_audio_segments(ids, soa_idx, eoa_idx, codectool):
vocals, instrumentals = [], []
range_begin = 1 if len(soa_idx) > len(eoa_idx) else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
# Vectorized processing
arr = rearrange(codec_ids, "(n b) -> b n", b=2)
vocals.append(codectool.ids2npy(arr[0]))
instrumentals.append(codectool.ids2npy(arr[1]))
return np.concatenate(vocals, axis=1), np.concatenate(instrumentals, axis=1)
def save_and_mix_audio(vocals, instrumentals, genres, random_id, output_dir):
# Save directly to memory buffers
vocal_buf = torch.as_tensor(vocals.astype(np.int16), device=DEVICE)
inst_buf = torch.as_tensor(instrumentals.astype(np.int16), device=DEVICE)
with torch.inference_mode():
vocal_wav = codec_model.decode(vocal_buf.unsqueeze(0).permute(1, 0, 2))
inst_wav = codec_model.decode(inst_buf.unsqueeze(0).permute(1, 0, 2))
# Mix directly in GPU memory
mixed = (vocal_wav + inst_wav) / 2
mixed = mixed.squeeze(0).cpu().numpy()
# Save final output
output_path = os.path.join(output_dir, f"mixed_{genres}_{random_id}.mp3")
sf.write(output_path, mixed.T, 16000)
return output_path
# Gradio
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
if is_shared_ui:
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second long music", minimum=100, maximum="3000", step=100, value=500, interactive=True) # increase it after testing
else:
num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Audio Result")
gr.Examples(
examples = [
[
"female blues airy vocal bright vocal piano sad romantic guitar jazz",
"""[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice
[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs = [genre_txt, lyrics_txt],
outputs = [music_out],
cache_examples = True,
cache_mode="eager",
fn=generate_music
)
submit_btn.click(
fn = generate_music,
inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs = [music_out]
)
demo.queue().launch(show_api=False, show_error=True) |