File size: 12,490 Bytes
6c02161
b2d8a8c
f46ec29
b2d8a8c
 
6df3b9e
60eb847
b2d8a8c
6b78ccb
 
 
 
 
 
 
98d025d
472d32d
 
 
c022c1a
472d32d
 
c022c1a
472d32d
c022c1a
 
 
9df60ba
c022c1a
 
 
 
9df60ba
472d32d
 
 
 
 
 
 
 
22e7225
6b78ccb
 
f46ec29
 
 
 
 
 
6b78ccb
 
 
 
 
 
 
 
f46ec29
6b78ccb
 
 
 
f46ec29
 
 
 
 
 
6b78ccb
f46ec29
 
22e7225
f46ec29
 
 
472d32d
f46ec29
 
 
 
 
 
472d32d
5b10475
f46ec29
 
5b10475
f46ec29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472d32d
f46ec29
c022c1a
472d32d
 
91ea958
f46ec29
c022c1a
 
 
 
 
 
 
 
5b10475
 
 
 
 
 
 
8af62c1
 
 
 
 
 
 
 
 
 
f46ec29
 
 
472d32d
 
f46ec29
c022c1a
 
 
f46ec29
c022c1a
 
f46ec29
 
 
 
 
 
 
 
 
 
 
 
 
 
472d32d
f46ec29
c022c1a
f46ec29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725074b
f46ec29
c022c1a
f46ec29
 
 
 
 
c022c1a
f46ec29
 
 
 
 
 
 
c022c1a
 
f46ec29
 
 
 
c022c1a
f46ec29
c022c1a
f46ec29
 
 
 
 
 
 
 
 
 
c022c1a
f46ec29
 
 
 
c022c1a
 
f46ec29
 
 
 
 
 
 
 
472d32d
f46ec29
 
 
 
472d32d
f46ec29
 
 
472d32d
f46ec29
 
 
 
 
 
 
 
 
472d32d
c022c1a
472d32d
b2d8a8c
725074b
 
 
 
 
 
c022c1a
725074b
 
 
 
 
 
 
 
 
 
 
 
c022c1a
725074b
c022c1a
725074b
472d32d
725074b
 
 
 
 
 
 
c022c1a
725074b
 
 
b2d8a8c
 
 
 
 
 
 
 
 
725074b
 
 
 
 
 
b2d8a8c
 
 
725074b
 
 
 
 
b8a38aa
725074b
 
 
 
 
 
 
c022c1a
 
 
91ea958
 
 
725074b
c022c1a
725074b
91ea958
c022c1a
 
725074b
6ec1c18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import sys

print("Installing flash-attn...")
# Install flash attention
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

from huggingface_hub import snapshot_download 

# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'

# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
    os.mkdir(folder_path)
    print(f"Folder created at: {folder_path}")
else:
    print(f"Folder already exists at: {folder_path}")

snapshot_download(
    repo_id = "m-a-p/xcodec_mini_infer",
    local_dir = "./xcodec_mini_infer"
)

# Change to the "inference" directory
inference_dir = "."
try:
    os.chdir(inference_dir)
    print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
    print(f"Directory not found: {inference_dir}")
    exit(1)

sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))

from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import torch
from huggingface_hub import snapshot_download
import sys
import uuid
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
import time
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
import re

# Configuration Constants
MAX_NEW_TOKENS = 3000
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_NAME = "m-a-p/YuE-s1-7B-anneal-en-cot"
CODEC_CONFIG_PATH = './xcodec_mini_infer/final_ckpt/config.yaml'
CODEC_CKPT_PATH = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'

# Global Initialization
is_shared_ui = "innova-ai/YuE-music-generator-demo" in os.environ.get('SPACE_ID', '')

# Preload models and components
def load_models():
    print("Initializing models...")
    
    # Load main model
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        torch_dtype=torch.float16,
        attn_implementation="flash_attention_2",
    ).to(DEVICE).eval()
    
    return model

# Preload all models and components
model = load_models()

# Audio processing cache
resampler_cache = {}
def get_resampler(orig_freq, new_freq):
    key = (orig_freq, new_freq)
    if key not in resampler_cache:
        resampler_cache[key] = Resample(orig_freq=orig_freq, new_freq=new_freq).to(DEVICE)
    return resampler_cache[key]

def load_audio_mono(filepath, sampling_rate=16000):
    audio, sr = torchaudio.load(filepath)
    audio = torch.mean(audio, dim=0, keepdim=True).to(DEVICE)
    if sr != sampling_rate:
        resampler = get_resampler(sr, sampling_rate)
        audio = resampler(audio)
    return audio

@spaces.GPU(duration=120)
def generate_music(
    genre_txt=None,
    lyrics_txt=None,
    max_new_tokens=100,
    run_n_segments=2,
    use_audio_prompt=False,
    audio_prompt_path="",
    prompt_start_time=0.0,
    prompt_end_time=30.0,
    output_dir="./output",
    keep_intermediate=False,
    rescale=False,
):
    # Load tokenizer
    mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
    
    # Precompute token IDs
    start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
    end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
    
    # Load codec model
    model_config = OmegaConf.load(CODEC_CONFIG_PATH)
    codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(DEVICE)
    parameter_dict = torch.load(CODEC_CKPT_PATH, map_location='cpu')
    codec_model.load_state_dict(parameter_dict['codec_model'])
    codec_model.eval()
    
    # Initialize codec tools
    codectool = CodecManipulator("xcodec", 0, 1)
    
    # Create output directories once
    os.makedirs(output_dir, exist_ok=True)
    stage1_output_dir = os.path.join(output_dir, "stage1")
    os.makedirs(stage1_output_dir, exist_ok=True)

    # Process inputs
    genres = genre_txt.strip()
    lyrics = split_lyrics(lyrics_txt+"\n")
    full_lyrics = "\n".join(lyrics)
    prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] + lyrics
    random_id = uuid.uuid4()

    # Audio prompt processing
    audio_prompt_codec_ids = []
    if use_audio_prompt:
        if not audio_prompt_path:
            raise FileNotFoundError("Audio prompt path required when using audio prompt!")
        
        audio_prompt = load_audio_mono(audio_prompt_path)
        with torch.inference_mode():
            raw_codes = codec_model.encode(audio_prompt.unsqueeze(0), target_bw=0.5)
            raw_codes = raw_codes.transpose(0, 1).cpu().numpy().astype(np.int16)
        
        code_ids = codectool.npy2ids(raw_codes[0])
        audio_prompt_codec = code_ids[int(prompt_start_time*50):int(prompt_end_time*50)]
        audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]

    # Generation loop optimization
    run_n_segments = min(run_n_segments+1, len(lyrics))
    output_seq = None
    
    with torch.inference_mode():
        for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
            if i == 0: continue  # Skip system prompt
            
            # Prepare prompt
            section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
            guidance_scale = 1.5 if i <= 1 else 1.2
            
            if i == 1:
                prompt_ids = mmtokenizer.tokenize(prompt_texts[0])
                if use_audio_prompt:
                    prompt_ids += mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
                prompt_ids += start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
            else:
                prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids

            # Process input sequence
            prompt_ids = torch.tensor(prompt_ids, device=DEVICE).unsqueeze(0)
            input_ids = torch.cat([output_seq, prompt_ids], dim=1) if i > 1 else prompt_ids
            
            # Generate sequence
            output_seq = model.generate(
                input_ids=input_ids,
                max_new_tokens=max_new_tokens,
                min_new_tokens=100,
                do_sample=True,
                top_p=0.93,
                temperature=1.0,
                repetition_penalty=1.2,
                eos_token_id=mmtokenizer.eoa,
                pad_token_id=mmtokenizer.eoa,
                logits_processor=LogitsProcessorList([
                    BlockTokenRangeProcessor(0, 32002),
                    BlockTokenRangeProcessor(32016, 32016)
                ]),
                guidance_scale=guidance_scale,
            )

    # Post-processing optimization
    ids = output_seq[0].cpu().numpy()
    soa_idx = np.where(ids == mmtokenizer.soa)[0]
    eoa_idx = np.where(ids == mmtokenizer.eoa)[0]
    
    # Vectorized audio processing
    vocals, instrumentals = process_audio_segments(ids, soa_idx, eoa_idx, codectool)
    
    # Save and mix audio
    return save_and_mix_audio(vocals, instrumentals, genres, random_id, output_dir)

def process_audio_segments(ids, soa_idx, eoa_idx, codectool):
    vocals, instrumentals = [], []
    range_begin = 1 if len(soa_idx) > len(eoa_idx) else 0
    
    for i in range(range_begin, len(soa_idx)):
        codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
        codec_ids = codec_ids[:2 * (len(codec_ids) // 2)]
        
        # Vectorized processing
        arr = rearrange(codec_ids, "(n b) -> b n", b=2)
        vocals.append(codectool.ids2npy(arr[0]))
        instrumentals.append(codectool.ids2npy(arr[1]))
        
    return np.concatenate(vocals, axis=1), np.concatenate(instrumentals, axis=1)

def save_and_mix_audio(vocals, instrumentals, genres, random_id, output_dir):
    # Save directly to memory buffers
    vocal_buf = torch.as_tensor(vocals.astype(np.int16), device=DEVICE)
    inst_buf = torch.as_tensor(instrumentals.astype(np.int16), device=DEVICE)
    
    with torch.inference_mode():
        vocal_wav = codec_model.decode(vocal_buf.unsqueeze(0).permute(1, 0, 2))
        inst_wav = codec_model.decode(inst_buf.unsqueeze(0).permute(1, 0, 2))
    
    # Mix directly in GPU memory
    mixed = (vocal_wav + inst_wav) / 2
    mixed = mixed.squeeze(0).cpu().numpy()
    
    # Save final output
    output_path = os.path.join(output_dir, f"mixed_{genres}_{random_id}.mp3")
    sf.write(output_path, mixed.T, 16000)
    
    return output_path

# Gradio 

with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/multimodal-art-projection/YuE">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://map-yue.github.io">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
            <a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
            </a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                genre_txt = gr.Textbox(label="Genre")
                lyrics_txt = gr.Textbox(label="Lyrics")
                
            with gr.Column():
                if is_shared_ui:
                    num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
                    max_new_tokens = gr.Slider(label="Max New Tokens", info="100 tokens equals 1 second long music", minimum=100, maximum="3000", step=100, value=500, interactive=True) # increase it after testing
                else:
                    num_segments = gr.Number(label="Number of Song Segments", value=2, interactive=True)
                    max_new_tokens = gr.Slider(label="Max New Tokens", minimum=500, maximum="24000", step=500, value=3000, interactive=True)
                submit_btn = gr.Button("Submit")
                music_out = gr.Audio(label="Audio Result")

        gr.Examples(
            examples = [
                [
                    "female blues airy vocal bright vocal piano sad romantic guitar jazz",
                    """[verse]
In the quiet of the evening, shadows start to fall
Whispers of the night wind echo through the hall
Lost within the silence, I hear your gentle voice
Guiding me back homeward, making my heart rejoice

[chorus]
Don't let this moment fade, hold me close tonight
With you here beside me, everything's alright
Can't imagine life alone, don't want to let you go
Stay with me forever, let our love just flow
                    """
                ],
                [
                    "rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
                    """[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands

[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
                    """
                ]
            ], 
             inputs = [genre_txt, lyrics_txt],
            outputs = [music_out],
            cache_examples = True,
            cache_mode="eager",
            fn=generate_music
        )
    
    submit_btn.click(
        fn = generate_music, 
        inputs = [genre_txt, lyrics_txt, num_segments, max_new_tokens],
        outputs = [music_out]
    )
demo.queue().launch(show_api=False, show_error=True)