document_redaction / tools /custom_image_analyser_engine.py
seanpedrickcase's picture
Allowed for Textract and Comprehend API calls through AWS keys. File preparation function incorporated into main redaction function to avoid needing user to 'check in' during redaction process
391712c
import pytesseract
import numpy as np
from presidio_analyzer import AnalyzerEngine, RecognizerResult
from typing import List, Dict, Optional, Union, Tuple
from dataclasses import dataclass
import time
import cv2
import copy
from copy import deepcopy
from pdfminer.layout import LTChar
import PIL
from PIL import Image
from typing import Optional, Tuple, Union
from tools.helper_functions import clean_unicode_text
from tools.presidio_analyzer_custom import recognizer_result_from_dict
from tools.load_spacy_model_custom_recognisers import custom_entities
@dataclass
class OCRResult:
text: str
left: int
top: int
width: int
height: int
@dataclass
class CustomImageRecognizerResult:
entity_type: str
start: int
end: int
score: float
left: int
top: int
width: int
height: int
text: str
class ImagePreprocessor:
"""ImagePreprocessor class.
Parent class for image preprocessing objects.
"""
def __init__(self, use_greyscale: bool = True) -> None:
"""Initialize the ImagePreprocessor class.
:param use_greyscale: Whether to convert the image to greyscale.
"""
self.use_greyscale = use_greyscale
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
"""Preprocess the image to be analyzed.
:param image: Loaded PIL image.
:return: The processed image and any metadata regarding the
preprocessing approach.
"""
return image, {}
def convert_image_to_array(self, image: Image.Image) -> np.ndarray:
"""Convert PIL image to numpy array.
:param image: Loaded PIL image.
:param convert_to_greyscale: Whether to convert the image to greyscale.
:return: image pixels as a numpy array.
"""
if isinstance(image, np.ndarray):
img = image
else:
if self.use_greyscale:
image = image.convert("L")
img = np.asarray(image)
return img
@staticmethod
def _get_bg_color(
image: Image.Image, is_greyscale: bool, invert: bool = False
) -> Union[int, Tuple[int, int, int]]:
"""Select most common color as background color.
:param image: Loaded PIL image.
:param is_greyscale: Whether the image is greyscale.
:param invert: TRUE if you want to get the inverse of the bg color.
:return: Background color.
"""
# Invert colors if invert flag is True
if invert:
if image.mode == "RGBA":
# Handle transparency as needed
r, g, b, a = image.split()
rgb_image = Image.merge("RGB", (r, g, b))
inverted_image = PIL.ImageOps.invert(rgb_image)
r2, g2, b2 = inverted_image.split()
image = Image.merge("RGBA", (r2, g2, b2, a))
else:
image = PIL.ImageOps.invert(image)
# Get background color
if is_greyscale:
# Select most common color as color
bg_color = int(np.bincount(image.flatten()).argmax())
else:
# Reduce size of image to 1 pixel to get dominant color
tmp_image = image.copy()
tmp_image = tmp_image.resize((1, 1), resample=0)
bg_color = tmp_image.getpixel((0, 0))
return bg_color
@staticmethod
def _get_image_contrast(image: np.ndarray) -> Tuple[float, float]:
"""Compute the contrast level and mean intensity of an image.
:param image: Input image pixels (as a numpy array).
:return: A tuple containing the contrast level and mean intensity of the image.
"""
contrast = np.std(image)
mean_intensity = np.mean(image)
return contrast, mean_intensity
class BilateralFilter(ImagePreprocessor):
"""BilateralFilter class.
The class applies bilateral filtering to an image. and returns the filtered
image and metadata.
"""
def __init__(
self, diameter: int = 3, sigma_color: int = 40, sigma_space: int = 40
) -> None:
"""Initialize the BilateralFilter class.
:param diameter: Diameter of each pixel neighborhood.
:param sigma_color: value of sigma in the color space.
:param sigma_space: value of sigma in the coordinate space.
"""
super().__init__(use_greyscale=True)
self.diameter = diameter
self.sigma_color = sigma_color
self.sigma_space = sigma_space
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
"""Preprocess the image to be analyzed.
:param image: Loaded PIL image.
:return: The processed image and metadata (diameter, sigma_color, sigma_space).
"""
image = self.convert_image_to_array(image)
# Apply bilateral filtering
filtered_image = cv2.bilateralFilter(
image,
self.diameter,
self.sigma_color,
self.sigma_space,
)
metadata = {
"diameter": self.diameter,
"sigma_color": self.sigma_color,
"sigma_space": self.sigma_space,
}
return Image.fromarray(filtered_image), metadata
class SegmentedAdaptiveThreshold(ImagePreprocessor):
"""SegmentedAdaptiveThreshold class.
The class applies adaptive thresholding to an image
and returns the thresholded image and metadata.
The parameters used to run the adaptivethresholding are selected based on
the contrast level of the image.
"""
def __init__(
self,
block_size: int = 5,
contrast_threshold: int = 40,
c_low_contrast: int = 10,
c_high_contrast: int = 40,
bg_threshold: int = 122,
) -> None:
"""Initialize the SegmentedAdaptiveThreshold class.
:param block_size: Size of the neighborhood area for threshold calculation.
:param contrast_threshold: Threshold for low contrast images.
:param C_low_contrast: Constant added to the mean for low contrast images.
:param C_high_contrast: Constant added to the mean for high contrast images.
:param bg_threshold: Threshold for background color.
"""
super().__init__(use_greyscale=True)
self.block_size = block_size
self.c_low_contrast = c_low_contrast
self.c_high_contrast = c_high_contrast
self.bg_threshold = bg_threshold
self.contrast_threshold = contrast_threshold
def preprocess_image(
self, image: Union[Image.Image, np.ndarray]
) -> Tuple[Image.Image, dict]:
"""Preprocess the image.
:param image: Loaded PIL image.
:return: The processed image and metadata (C, background_color, contrast).
"""
if not isinstance(image, np.ndarray):
image = self.convert_image_to_array(image)
# Determine background color
background_color = self._get_bg_color(image, True)
contrast, _ = self._get_image_contrast(image)
c = (
self.c_low_contrast
if contrast <= self.contrast_threshold
else self.c_high_contrast
)
if background_color < self.bg_threshold:
adaptive_threshold_image = cv2.adaptiveThreshold(
image,
255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY_INV,
self.block_size,
-c,
)
else:
adaptive_threshold_image = cv2.adaptiveThreshold(
image,
255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
self.block_size,
c,
)
metadata = {"C": c, "background_color": background_color, "contrast": contrast}
return Image.fromarray(adaptive_threshold_image), metadata
class ImageRescaling(ImagePreprocessor):
"""ImageRescaling class. Rescales images based on their size."""
def __init__(
self,
small_size: int = 1048576,
large_size: int = 4000000,
factor: int = 2,
interpolation: int = cv2.INTER_AREA,
) -> None:
"""Initialize the ImageRescaling class.
:param small_size: Threshold for small image size.
:param large_size: Threshold for large image size.
:param factor: Scaling factor for resizing.
:param interpolation: Interpolation method for resizing.
"""
super().__init__(use_greyscale=True)
self.small_size = small_size
self.large_size = large_size
self.factor = factor
self.interpolation = interpolation
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
"""Preprocess the image to be analyzed.
:param image: Loaded PIL image.
:return: The processed image and metadata (scale_factor).
"""
scale_factor = 1
if image.size < self.small_size:
scale_factor = self.factor
elif image.size > self.large_size:
scale_factor = 1 / self.factor
width = int(image.shape[1] * scale_factor)
height = int(image.shape[0] * scale_factor)
dimensions = (width, height)
# resize image
rescaled_image = cv2.resize(image, dimensions, interpolation=self.interpolation)
metadata = {"scale_factor": scale_factor}
return Image.fromarray(rescaled_image), metadata
class ContrastSegmentedImageEnhancer(ImagePreprocessor):
"""Class containing all logic to perform contrastive segmentation.
Contrastive segmentation is a preprocessing step that aims to enhance the
text in an image by increasing the contrast between the text and the
background. The parameters used to run the preprocessing are selected based
on the contrast level of the image.
"""
def __init__(
self,
bilateral_filter: Optional[BilateralFilter] = None,
adaptive_threshold: Optional[SegmentedAdaptiveThreshold] = None,
image_rescaling: Optional[ImageRescaling] = None,
low_contrast_threshold: int = 40,
) -> None:
"""Initialize the class.
:param bilateral_filter: Optional BilateralFilter instance.
:param adaptive_threshold: Optional AdaptiveThreshold instance.
:param image_rescaling: Optional ImageRescaling instance.
:param low_contrast_threshold: Threshold for low contrast images.
"""
super().__init__(use_greyscale=True)
if not bilateral_filter:
self.bilateral_filter = BilateralFilter()
else:
self.bilateral_filter = bilateral_filter
if not adaptive_threshold:
self.adaptive_threshold = SegmentedAdaptiveThreshold()
else:
self.adaptive_threshold = adaptive_threshold
if not image_rescaling:
self.image_rescaling = ImageRescaling()
else:
self.image_rescaling = image_rescaling
self.low_contrast_threshold = low_contrast_threshold
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
"""Preprocess the image to be analyzed.
:param image: Loaded PIL image.
:return: The processed image and metadata (background color, scale percentage,
contrast level, and C value).
"""
image = self.convert_image_to_array(image)
# Apply bilateral filtering
filtered_image, _ = self.bilateral_filter.preprocess_image(image)
# Convert to grayscale
pil_filtered_image = Image.fromarray(np.uint8(filtered_image))
pil_grayscale_image = pil_filtered_image.convert("L")
grayscale_image = np.asarray(pil_grayscale_image)
# Improve contrast
adjusted_image, _, adjusted_contrast = self._improve_contrast(grayscale_image)
# Adaptive Thresholding
adaptive_threshold_image, _ = self.adaptive_threshold.preprocess_image(
adjusted_image
)
# Increase contrast
_, threshold_image = cv2.threshold(
np.asarray(adaptive_threshold_image),
0,
255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU,
)
# Rescale image
rescaled_image, scale_metadata = self.image_rescaling.preprocess_image(
threshold_image
)
return rescaled_image, scale_metadata
def _improve_contrast(self, image: np.ndarray) -> Tuple[np.ndarray, str, str]:
"""Improve the contrast of an image based on its initial contrast level.
:param image: Input image.
:return: A tuple containing the improved image, the initial contrast level,
and the adjusted contrast level.
"""
contrast, mean_intensity = self._get_image_contrast(image)
if contrast <= self.low_contrast_threshold:
alpha = 1.5
beta = -mean_intensity * alpha
adjusted_image = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
adjusted_contrast, _ = self._get_image_contrast(adjusted_image)
else:
adjusted_image = image
adjusted_contrast = contrast
return adjusted_image, contrast, adjusted_contrast
def bounding_boxes_overlap(box1, box2):
"""Check if two bounding boxes overlap."""
return (box1[0] < box2[2] and box2[0] < box1[2] and
box1[1] < box2[3] and box2[1] < box1[3])
def map_back_entity_results(page_analyser_result, page_text_mapping, all_text_line_results):
for entity in page_analyser_result:
entity_start = entity.start
entity_end = entity.end
# Track if the entity has been added to any line
added_to_line = False
for batch_start, line_idx, original_line, chars in page_text_mapping:
batch_end = batch_start + len(original_line.text)
# Check if the entity overlaps with the current line
if batch_start < entity_end and batch_end > entity_start: # Overlap condition
relative_start = max(0, entity_start - batch_start) # Adjust start relative to the line
relative_end = min(entity_end - batch_start, len(original_line.text)) # Adjust end relative to the line
# Create a new adjusted entity
adjusted_entity = copy.deepcopy(entity)
adjusted_entity.start = relative_start
adjusted_entity.end = relative_end
# Check if this line already has an entry
existing_entry = next((entry for idx, entry in all_text_line_results if idx == line_idx), None)
if existing_entry is None:
all_text_line_results.append((line_idx, [adjusted_entity]))
else:
existing_entry.append(adjusted_entity) # Append to the existing list of entities
added_to_line = True
# If the entity spans multiple lines, you may want to handle that here
if not added_to_line:
# Handle cases where the entity does not fit in any line (optional)
print(f"Entity '{entity}' does not fit in any line.")
return all_text_line_results
def map_back_comprehend_entity_results(response, current_batch_mapping, allow_list, chosen_redact_comprehend_entities, all_text_line_results):
if not response or "Entities" not in response:
return all_text_line_results
for entity in response["Entities"]:
if entity.get("Type") not in chosen_redact_comprehend_entities:
continue
entity_start = entity["BeginOffset"]
entity_end = entity["EndOffset"]
# Track if the entity has been added to any line
added_to_line = False
# Find the correct line and offset within that line
for batch_start, line_idx, original_line, chars, line_offset in current_batch_mapping:
batch_end = batch_start + len(original_line.text[line_offset:])
# Check if the entity overlaps with the current line
if batch_start < entity_end and batch_end > entity_start: # Overlap condition
# Calculate the absolute position within the line
relative_start = max(0, entity_start - batch_start + line_offset)
relative_end = min(entity_end - batch_start + line_offset, len(original_line.text))
result_text = original_line.text[relative_start:relative_end]
if result_text not in allow_list:
adjusted_entity = entity.copy()
adjusted_entity["BeginOffset"] = relative_start # Now relative to the full line
adjusted_entity["EndOffset"] = relative_end
recogniser_entity = recognizer_result_from_dict(adjusted_entity)
existing_entry = next((entry for idx, entry in all_text_line_results if idx == line_idx), None)
if existing_entry is None:
all_text_line_results.append((line_idx, [recogniser_entity]))
else:
existing_entry.append(recogniser_entity) # Append to the existing list of entities
added_to_line = True
# Optional: Handle cases where the entity does not fit in any line
if not added_to_line:
print(f"Entity '{entity}' does not fit in any line.")
return all_text_line_results
def do_aws_comprehend_call(current_batch, current_batch_mapping, comprehend_client, language, allow_list, chosen_redact_comprehend_entities, all_text_line_results):
if not current_batch:
return all_text_line_results
max_retries = 3
retry_delay = 3
for attempt in range(max_retries):
try:
response = comprehend_client.detect_pii_entities(
Text=current_batch.strip(),
LanguageCode=language
)
all_text_line_results = map_back_comprehend_entity_results(
response,
current_batch_mapping,
allow_list,
chosen_redact_comprehend_entities,
all_text_line_results
)
return all_text_line_results
except Exception as e:
if attempt == max_retries - 1:
print("AWS Comprehend calls failed due to", e)
raise
time.sleep(retry_delay)
def run_page_text_redaction(
language: str,
chosen_redact_entities: List[str],
chosen_redact_comprehend_entities: List[str],
line_level_text_results_list: List[str],
line_characters: List,
page_analyser_results: List = [],
page_analysed_bounding_boxes: List = [],
comprehend_client = None,
allow_list: List[str] = None,
pii_identification_method: str = "Local",
nlp_analyser = None,
score_threshold: float = 0.0,
custom_entities: List[str] = None,
comprehend_query_number:int = 0#,
#merge_text_bounding_boxes_fn = merge_text_bounding_boxes
):
#if not merge_text_bounding_boxes_fn:
# raise ValueError("merge_text_bounding_boxes_fn is required")
page_text = ""
page_text_mapping = []
all_text_line_results = []
comprehend_query_number = 0
# Collect all text from the page
for i, text_line in enumerate(line_level_text_results_list):
#print("line_level_text_results_list:", line_level_text_results_list)
if chosen_redact_entities:
if page_text:
#page_text += " | "
page_text += " "
start_pos = len(page_text)
page_text += text_line.text
page_text_mapping.append((start_pos, i, text_line, line_characters[i]))
# Process based on identification method
if pii_identification_method == "Local":
if not nlp_analyser:
raise ValueError("nlp_analyser is required for Local identification method")
#print("page text:", page_text)
page_analyser_result = nlp_analyser.analyze(
text=page_text,
language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list
)
all_text_line_results = map_back_entity_results(
page_analyser_result,
page_text_mapping,
all_text_line_results
)
elif pii_identification_method == "AWS Comprehend":
# Process custom entities if any
if custom_entities:
custom_redact_entities = [
entity for entity in chosen_redact_comprehend_entities
if entity in custom_entities
]
if custom_redact_entities:
page_analyser_result = nlp_analyser.analyze(
text=page_text,
language=language,
entities=custom_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list
)
all_text_line_results = map_back_entity_results(
page_analyser_result,
page_text_mapping,
all_text_line_results
)
current_batch = ""
current_batch_mapping = []
batch_char_count = 0
batch_word_count = 0
for i, text_line in enumerate(line_level_text_results_list):
words = text_line.text.split()
word_start_positions = []
# Calculate word start positions within the line
current_pos = 0
for word in words:
word_start_positions.append(current_pos)
current_pos += len(word) + 1 # +1 for space
for word_idx, word in enumerate(words):
new_batch_char_count = len(current_batch) + len(word) + 1
if batch_word_count >= 50 or new_batch_char_count >= 200:
# Process current batch
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
language,
allow_list,
chosen_redact_comprehend_entities,
all_text_line_results
)
comprehend_query_number += 1
# Start new batch
current_batch = word
batch_word_count = 1
batch_char_count = len(word)
current_batch_mapping = [(0, i, text_line, line_characters[i], word_start_positions[word_idx])]
else:
if current_batch:
current_batch += " "
batch_char_count += 1
current_batch += word
batch_char_count += len(word)
batch_word_count += 1
if not current_batch_mapping or current_batch_mapping[-1][1] != i:
current_batch_mapping.append((
batch_char_count - len(word),
i,
text_line,
line_characters[i],
word_start_positions[word_idx] # Add the word's start position within its line
))
# Process final batch
if current_batch:
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
language,
allow_list,
chosen_redact_comprehend_entities,
all_text_line_results
)
comprehend_query_number += 1
# Process results for each line
for i, text_line in enumerate(line_level_text_results_list):
line_results = next((results for idx, results in all_text_line_results if idx == i), [])
if line_results:
text_line_bounding_boxes = merge_text_bounding_boxes(
line_results,
line_characters[i]
)
page_analyser_results.extend(line_results)
page_analysed_bounding_boxes.extend(text_line_bounding_boxes)
return page_analysed_bounding_boxes
def merge_text_bounding_boxes(analyser_results, characters: List[LTChar], combine_pixel_dist: int = 20, vertical_padding: int = 0):
'''
Merge identified bounding boxes containing PII that are very close to one another
'''
analysed_bounding_boxes = []
original_bounding_boxes = [] # List to hold original bounding boxes
if len(analyser_results) > 0 and len(characters) > 0:
# Extract bounding box coordinates for sorting
bounding_boxes = []
for result in analyser_results:
#print("Result:", result)
char_boxes = [char.bbox for char in characters[result.start:result.end] if isinstance(char, LTChar)]
char_text = [char._text for char in characters[result.start:result.end] if isinstance(char, LTChar)]
if char_boxes:
# Calculate the bounding box that encompasses all characters
left = min(box[0] for box in char_boxes)
bottom = min(box[1] for box in char_boxes)
right = max(box[2] for box in char_boxes)
top = max(box[3] for box in char_boxes) + vertical_padding
bbox = [left, bottom, right, top]
bounding_boxes.append((bottom, left, result, bbox, char_text)) # (y, x, result, bbox, text)
# Store original bounding boxes
original_bounding_boxes.append({"text": "".join(char_text), "boundingBox": bbox, "result": copy.deepcopy(result)})
#print("Original bounding boxes:", original_bounding_boxes)
# Sort the results by y-coordinate and then by x-coordinate
bounding_boxes.sort()
merged_bounding_boxes = []
current_box = None
current_y = None
current_result = None
current_text = []
for y, x, result, next_box, text in bounding_boxes:
if current_y is None or current_box is None:
# Initialize the first bounding box
current_box = next_box
current_y = next_box[1]
current_result = result
current_text = list(text)
else:
vertical_diff_bboxes = abs(next_box[1] - current_y)
horizontal_diff_bboxes = abs(next_box[0] - current_box[2])
if vertical_diff_bboxes <= 5 and horizontal_diff_bboxes <= combine_pixel_dist:
# Merge bounding boxes
#print("Merging boxes")
merged_box = current_box.copy()
merged_result = current_result
merged_text = current_text.copy()
merged_box[2] = next_box[2] # Extend horizontally
merged_box[3] = max(current_box[3], next_box[3]) # Adjust the top
merged_result.end = max(current_result.end, result.end) # Extend text range
try:
if current_result.entity_type != result.entity_type:
merged_result.entity_type = current_result.entity_type + " - " + result.entity_type
else:
merged_result.entity_type = current_result.entity_type
except Exception as e:
print("Unable to combine result entity types:", e)
if current_text:
merged_text.append(" ") # Add space between texts
merged_text.extend(text)
merged_bounding_boxes.append({
"text": "".join(merged_text),
"boundingBox": merged_box,
"result": merged_result
})
else:
# Start a new bounding box
current_box = next_box
current_y = next_box[1]
current_result = result
current_text = list(text)
# Combine original and merged bounding boxes
analysed_bounding_boxes.extend(original_bounding_boxes)
analysed_bounding_boxes.extend(merged_bounding_boxes)
#print("Analysed bounding boxes:", analysed_bounding_boxes)
return analysed_bounding_boxes
# Function to combine OCR results into line-level results
def combine_ocr_results(ocr_results, x_threshold=50, y_threshold=12):
# Group OCR results into lines based on y_threshold
lines = []
current_line = []
for result in sorted(ocr_results, key=lambda x: x.top):
if not current_line or abs(result.top - current_line[0].top) <= y_threshold:
current_line.append(result)
else:
lines.append(current_line)
current_line = [result]
if current_line:
lines.append(current_line)
# Sort each line by left position
for line in lines:
line.sort(key=lambda x: x.left)
# Flatten the sorted lines back into a single list
sorted_results = [result for line in lines for result in line]
combined_results = []
new_format_results = {}
current_line = []
current_bbox = None
line_counter = 1
def create_ocr_result_with_children(combined_results, i, current_bbox, current_line):
combined_results["text_line_" + str(i)] = {
"line": i,
'text': current_bbox.text,
'bounding_box': (current_bbox.left, current_bbox.top,
current_bbox.left + current_bbox.width,
current_bbox.top + current_bbox.height),
'words': [{'text': word.text,
'bounding_box': (word.left, word.top,
word.left + word.width,
word.top + word.height)}
for word in current_line]
}
return combined_results["text_line_" + str(i)]
for result in sorted_results:
if not current_line:
# Start a new line
current_line.append(result)
current_bbox = result
else:
# Check if the result is on the same line (y-axis) and close horizontally (x-axis)
last_result = current_line[-1]
if abs(result.top - last_result.top) <= y_threshold and \
(result.left - (last_result.left + last_result.width)) <= x_threshold:
# Update the bounding box to include the new word
new_right = max(current_bbox.left + current_bbox.width, result.left + result.width)
current_bbox = OCRResult(
text=f"{current_bbox.text} {result.text}",
left=current_bbox.left,
top=current_bbox.top,
width=new_right - current_bbox.left,
height=max(current_bbox.height, result.height)
)
current_line.append(result)
else:
# Commit the current line and start a new one
combined_results.append(current_bbox)
new_format_results["text_line_" + str(line_counter)] = create_ocr_result_with_children(new_format_results, line_counter, current_bbox, current_line)
line_counter += 1
current_line = [result]
current_bbox = result
# Append the last line
if current_bbox:
combined_results.append(current_bbox)
new_format_results["text_line_" + str(line_counter)] = create_ocr_result_with_children(new_format_results, line_counter, current_bbox, current_line)
return combined_results, new_format_results
class CustomImageAnalyzerEngine:
def __init__(
self,
analyzer_engine: Optional[AnalyzerEngine] = None,
tesseract_config: Optional[str] = None,
image_preprocessor: Optional[ImagePreprocessor] = None
):
if not analyzer_engine:
analyzer_engine = AnalyzerEngine()
self.analyzer_engine = analyzer_engine
self.tesseract_config = tesseract_config or '--oem 3 --psm 11'
if not image_preprocessor:
image_preprocessor = ContrastSegmentedImageEnhancer()
#print(image_preprocessor)
self.image_preprocessor = image_preprocessor
def perform_ocr(self, image: Union[str, Image.Image, np.ndarray]) -> List[OCRResult]:
# Ensure image is a PIL Image
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
image_processed, preprocessing_metadata = self.image_preprocessor.preprocess_image(image)
ocr_data = pytesseract.image_to_data(image_processed, output_type=pytesseract.Output.DICT, config=self.tesseract_config)
if preprocessing_metadata and ("scale_factor" in preprocessing_metadata):
ocr_result = self._scale_bbox_results(
ocr_data, preprocessing_metadata["scale_factor"]
)
ocr_result = self.remove_space_boxes(ocr_result)
# Filter out empty strings and low confidence results
valid_indices = [i for i, text in enumerate(ocr_result['text']) if text.strip() and int(ocr_result['conf'][i]) > 0]
return [
OCRResult(
text=clean_unicode_text(ocr_result['text'][i]),
left=ocr_result['left'][i],
top=ocr_result['top'][i],
width=ocr_result['width'][i],
height=ocr_result['height'][i]
)
for i in valid_indices
]
def analyze_text(
self,
line_level_ocr_results: List[OCRResult],
ocr_results_with_children: Dict[str, Dict],
chosen_redact_comprehend_entities: List[str],
pii_identification_method: str = "Local",
comprehend_client = "",
**text_analyzer_kwargs
) -> List[CustomImageRecognizerResult]:
page_text = ""
page_text_mapping = []
all_text_line_results = []
comprehend_query_number = 0
# Collect all text and create mapping
for i, line_level_ocr_result in enumerate(line_level_ocr_results):
if page_text:
page_text += " "
start_pos = len(page_text)
page_text += line_level_ocr_result.text
# Note: We're not passing line_characters here since it's not needed for this use case
page_text_mapping.append((start_pos, i, line_level_ocr_result, None))
# Process using either Local or AWS Comprehend
if pii_identification_method == "Local":
analyzer_result = self.analyzer_engine.analyze(
text=page_text,
**text_analyzer_kwargs
)
all_text_line_results = map_back_entity_results(
analyzer_result,
page_text_mapping,
all_text_line_results
)
elif pii_identification_method == "AWS Comprehend":
# Handle custom entities first
if custom_entities:
custom_redact_entities = [
entity for entity in chosen_redact_comprehend_entities
if entity in custom_entities
]
if custom_redact_entities:
text_analyzer_kwargs["entities"] = custom_redact_entities
page_analyser_result = self.analyzer_engine.analyze(
text=page_text,
**text_analyzer_kwargs
)
all_text_line_results = map_back_entity_results(
page_analyser_result,
page_text_mapping,
all_text_line_results
)
# Process text in batches for AWS Comprehend
current_batch = ""
current_batch_mapping = []
batch_char_count = 0
batch_word_count = 0
for i, text_line in enumerate(line_level_ocr_results):
words = text_line.text.split()
word_start_positions = []
current_pos = 0
for word in words:
word_start_positions.append(current_pos)
current_pos += len(word) + 1
for word_idx, word in enumerate(words):
new_batch_char_count = len(current_batch) + len(word) + 1
if batch_word_count >= 50 or new_batch_char_count >= 200:
# Process current batch
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
text_analyzer_kwargs["language"],
text_analyzer_kwargs.get('allow_list', []),
chosen_redact_comprehend_entities,
all_text_line_results
)
comprehend_query_number += 1
# Reset batch
current_batch = word
batch_word_count = 1
batch_char_count = len(word)
current_batch_mapping = [(0, i, text_line, None, word_start_positions[word_idx])]
else:
if current_batch:
current_batch += " "
batch_char_count += 1
current_batch += word
batch_char_count += len(word)
batch_word_count += 1
if not current_batch_mapping or current_batch_mapping[-1][1] != i:
current_batch_mapping.append((
batch_char_count - len(word),
i,
text_line,
None,
word_start_positions[word_idx]
))
# Process final batch if any
if current_batch:
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
text_analyzer_kwargs["language"],
text_analyzer_kwargs.get('allow_list', []),
chosen_redact_comprehend_entities,
all_text_line_results
)
comprehend_query_number += 1
# Process results and create bounding boxes
combined_results = []
for i, text_line in enumerate(line_level_ocr_results):
line_results = next((results for idx, results in all_text_line_results if idx == i), [])
if line_results and i < len(ocr_results_with_children):
child_level_key = list(ocr_results_with_children.keys())[i]
ocr_results_with_children_line_level = ocr_results_with_children[child_level_key]
for result in line_results:
bbox_results = self.map_analyzer_results_to_bounding_boxes(
[result],
[OCRResult(
text=text_line.text[result.start:result.end],
left=text_line.left,
top=text_line.top,
width=text_line.width,
height=text_line.height
)],
text_line.text,
text_analyzer_kwargs.get('allow_list', []),
ocr_results_with_children_line_level
)
combined_results.extend(bbox_results)
return combined_results, comprehend_query_number
@staticmethod
def map_analyzer_results_to_bounding_boxes(
text_analyzer_results: List[RecognizerResult],
redaction_relevant_ocr_results: List[OCRResult],
full_text: str,
allow_list: List[str],
ocr_results_with_children_child_info: Dict[str, Dict]
) -> List[CustomImageRecognizerResult]:
redaction_bboxes = []
for redaction_relevant_ocr_result in redaction_relevant_ocr_results:
#print("ocr_results_with_children_child_info:", ocr_results_with_children_child_info)
line_text = ocr_results_with_children_child_info['text']
line_length = len(line_text)
redaction_text = redaction_relevant_ocr_result.text
#print(f"Processing line: '{line_text}'")
for redaction_result in text_analyzer_results:
#print(f"Checking redaction result: {redaction_result}")
#print("redaction_text:", redaction_text)
#print("line_length:", line_length)
#print("line_text:", line_text)
# Check if the redaction text is not in the allow list
if redaction_text not in allow_list:
# Adjust start and end to be within line bounds
start_in_line = max(0, redaction_result.start)
end_in_line = min(line_length, redaction_result.end)
# Get the matched text from this line
matched_text = line_text[start_in_line:end_in_line]
matched_words = matched_text.split()
# print(f"Found match: '{matched_text}' in line")
# for word_info in ocr_results_with_children_child_info.get('words', []):
# # Check if this word is part of our match
# if any(word.lower() in word_info['text'].lower() for word in matched_words):
# matching_word_boxes.append(word_info['bounding_box'])
# print(f"Matched word: {word_info['text']}")
# Find the corresponding words in the OCR results
matching_word_boxes = []
#print("ocr_results_with_children_child_info:", ocr_results_with_children_child_info)
current_position = 0
for word_info in ocr_results_with_children_child_info.get('words', []):
word_text = word_info['text']
word_length = len(word_text)
# Assign start and end character positions
#word_info['start_position'] = current_position
#word_info['end_position'] = current_position + word_length
word_start = current_position
word_end = current_position + word_length
# Update current position for the next word
current_position += word_length + 1 # +1 for the space after the word
#print("word_info['bounding_box']:", word_info['bounding_box'])
#print("word_start:", word_start)
#print("start_in_line:", start_in_line)
#print("word_end:", word_end)
#print("end_in_line:", end_in_line)
# Check if the word's bounding box is within the start and end bounds
if word_start >= start_in_line and word_end <= (end_in_line + 1):
matching_word_boxes.append(word_info['bounding_box'])
#print(f"Matched word: {word_info['text']}")
if matching_word_boxes:
# Calculate the combined bounding box for all matching words
left = min(box[0] for box in matching_word_boxes)
top = min(box[1] for box in matching_word_boxes)
right = max(box[2] for box in matching_word_boxes)
bottom = max(box[3] for box in matching_word_boxes)
redaction_bboxes.append(
CustomImageRecognizerResult(
entity_type=redaction_result.entity_type,
start=start_in_line,
end=end_in_line,
score=redaction_result.score,
left=left,
top=top,
width=right - left,
height=bottom - top,
text=matched_text
)
)
#print(f"Added bounding box for: '{matched_text}'")
return redaction_bboxes
@staticmethod
def remove_space_boxes(ocr_result: dict) -> dict:
"""Remove OCR bboxes that are for spaces.
:param ocr_result: OCR results (raw or thresholded).
:return: OCR results with empty words removed.
"""
# Get indices of items with no text
idx = list()
for i, text in enumerate(ocr_result["text"]):
is_not_space = text.isspace() is False
if text != "" and is_not_space:
idx.append(i)
# Only retain items with text
filtered_ocr_result = {}
for key in list(ocr_result.keys()):
filtered_ocr_result[key] = [ocr_result[key][i] for i in idx]
return filtered_ocr_result
@staticmethod
def _scale_bbox_results(
ocr_result: Dict[str, List[Union[int, str]]], scale_factor: float
) -> Dict[str, float]:
"""Scale down the bounding box results based on a scale percentage.
:param ocr_result: OCR results (raw).
:param scale_percent: Scale percentage for resizing the bounding box.
:return: OCR results (scaled).
"""
scaled_results = deepcopy(ocr_result)
coordinate_keys = ["left", "top"]
dimension_keys = ["width", "height"]
for coord_key in coordinate_keys:
scaled_results[coord_key] = [
int(np.ceil((x) / (scale_factor))) for x in scaled_results[coord_key]
]
for dim_key in dimension_keys:
scaled_results[dim_key] = [
max(1, int(np.ceil(x / (scale_factor))))
for x in scaled_results[dim_key]
]
return scaled_results
@staticmethod
def estimate_x_offset(full_text: str, start: int) -> int:
# Estimate the x-offset based on character position
# This is a simple estimation and might need refinement for variable-width fonts
return int(start / len(full_text) * len(full_text))
def estimate_width(self, ocr_result: OCRResult, start: int, end: int) -> int:
# Extract the relevant text portion
relevant_text = ocr_result.text[start:end]
# If the relevant text is the same as the full text, return the full width
if relevant_text == ocr_result.text:
return ocr_result.width
# Estimate width based on the proportion of the relevant text length to the total text length
total_text_length = len(ocr_result.text)
relevant_text_length = len(relevant_text)
if total_text_length == 0:
return 0 # Avoid division by zero
# Proportion of the relevant text to the total text
proportion = relevant_text_length / total_text_length
# Estimate the width based on the proportion
estimated_width = int(proportion * ocr_result.width)
return estimated_width