File size: 48,996 Bytes
e9c4101 390bef2 8652429 cb349ad 8652429 cb349ad 8652429 eea5c07 f0f9378 ec98119 e9c4101 8652429 84c83c0 cb349ad 391712c cb349ad bde6e5b cb349ad 84c83c0 e9c4101 8652429 e9c4101 8652429 a748df6 8652429 e9c4101 8652429 e9c4101 8652429 e9c4101 eea5c07 8652429 e9c4101 84c83c0 a748df6 cb349ad e9c4101 84c83c0 cb349ad 8235bbb f0f9378 cb349ad 542c252 cb349ad f0f9378 cb349ad ec98119 cb349ad ec98119 cb349ad 6ac4be4 cb349ad ec98119 cb349ad 542c252 cb349ad 542c252 cb349ad 542c252 cb349ad a748df6 cb349ad 542c252 cb349ad 542c252 cb349ad 6ea0852 8235bbb e9c4101 cb349ad 84c83c0 e9c4101 84c83c0 cb349ad a748df6 cb349ad 84c83c0 bde6e5b cb349ad 84c83c0 bde6e5b cb349ad bde6e5b cb349ad bde6e5b cb349ad bde6e5b cb349ad bde6e5b cb349ad bde6e5b cb349ad e9c4101 bde6e5b e9c4101 84c83c0 8652429 6ea0852 8652429 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 |
import pytesseract
import numpy as np
from presidio_analyzer import AnalyzerEngine, RecognizerResult
from typing import List, Dict, Optional, Union, Tuple
from dataclasses import dataclass
import time
import cv2
import copy
from copy import deepcopy
from pdfminer.layout import LTChar
import PIL
from PIL import Image
from typing import Optional, Tuple, Union
from tools.helper_functions import clean_unicode_text
from tools.presidio_analyzer_custom import recognizer_result_from_dict
from tools.load_spacy_model_custom_recognisers import custom_entities
@dataclass
class OCRResult:
text: str
left: int
top: int
width: int
height: int
@dataclass
class CustomImageRecognizerResult:
entity_type: str
start: int
end: int
score: float
left: int
top: int
width: int
height: int
text: str
class ImagePreprocessor:
"""ImagePreprocessor class.
Parent class for image preprocessing objects.
"""
def __init__(self, use_greyscale: bool = True) -> None:
"""Initialize the ImagePreprocessor class.
:param use_greyscale: Whether to convert the image to greyscale.
"""
self.use_greyscale = use_greyscale
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
"""Preprocess the image to be analyzed.
:param image: Loaded PIL image.
:return: The processed image and any metadata regarding the
preprocessing approach.
"""
return image, {}
def convert_image_to_array(self, image: Image.Image) -> np.ndarray:
"""Convert PIL image to numpy array.
:param image: Loaded PIL image.
:param convert_to_greyscale: Whether to convert the image to greyscale.
:return: image pixels as a numpy array.
"""
if isinstance(image, np.ndarray):
img = image
else:
if self.use_greyscale:
image = image.convert("L")
img = np.asarray(image)
return img
@staticmethod
def _get_bg_color(
image: Image.Image, is_greyscale: bool, invert: bool = False
) -> Union[int, Tuple[int, int, int]]:
"""Select most common color as background color.
:param image: Loaded PIL image.
:param is_greyscale: Whether the image is greyscale.
:param invert: TRUE if you want to get the inverse of the bg color.
:return: Background color.
"""
# Invert colors if invert flag is True
if invert:
if image.mode == "RGBA":
# Handle transparency as needed
r, g, b, a = image.split()
rgb_image = Image.merge("RGB", (r, g, b))
inverted_image = PIL.ImageOps.invert(rgb_image)
r2, g2, b2 = inverted_image.split()
image = Image.merge("RGBA", (r2, g2, b2, a))
else:
image = PIL.ImageOps.invert(image)
# Get background color
if is_greyscale:
# Select most common color as color
bg_color = int(np.bincount(image.flatten()).argmax())
else:
# Reduce size of image to 1 pixel to get dominant color
tmp_image = image.copy()
tmp_image = tmp_image.resize((1, 1), resample=0)
bg_color = tmp_image.getpixel((0, 0))
return bg_color
@staticmethod
def _get_image_contrast(image: np.ndarray) -> Tuple[float, float]:
"""Compute the contrast level and mean intensity of an image.
:param image: Input image pixels (as a numpy array).
:return: A tuple containing the contrast level and mean intensity of the image.
"""
contrast = np.std(image)
mean_intensity = np.mean(image)
return contrast, mean_intensity
class BilateralFilter(ImagePreprocessor):
"""BilateralFilter class.
The class applies bilateral filtering to an image. and returns the filtered
image and metadata.
"""
def __init__(
self, diameter: int = 3, sigma_color: int = 40, sigma_space: int = 40
) -> None:
"""Initialize the BilateralFilter class.
:param diameter: Diameter of each pixel neighborhood.
:param sigma_color: value of sigma in the color space.
:param sigma_space: value of sigma in the coordinate space.
"""
super().__init__(use_greyscale=True)
self.diameter = diameter
self.sigma_color = sigma_color
self.sigma_space = sigma_space
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
"""Preprocess the image to be analyzed.
:param image: Loaded PIL image.
:return: The processed image and metadata (diameter, sigma_color, sigma_space).
"""
image = self.convert_image_to_array(image)
# Apply bilateral filtering
filtered_image = cv2.bilateralFilter(
image,
self.diameter,
self.sigma_color,
self.sigma_space,
)
metadata = {
"diameter": self.diameter,
"sigma_color": self.sigma_color,
"sigma_space": self.sigma_space,
}
return Image.fromarray(filtered_image), metadata
class SegmentedAdaptiveThreshold(ImagePreprocessor):
"""SegmentedAdaptiveThreshold class.
The class applies adaptive thresholding to an image
and returns the thresholded image and metadata.
The parameters used to run the adaptivethresholding are selected based on
the contrast level of the image.
"""
def __init__(
self,
block_size: int = 5,
contrast_threshold: int = 40,
c_low_contrast: int = 10,
c_high_contrast: int = 40,
bg_threshold: int = 122,
) -> None:
"""Initialize the SegmentedAdaptiveThreshold class.
:param block_size: Size of the neighborhood area for threshold calculation.
:param contrast_threshold: Threshold for low contrast images.
:param C_low_contrast: Constant added to the mean for low contrast images.
:param C_high_contrast: Constant added to the mean for high contrast images.
:param bg_threshold: Threshold for background color.
"""
super().__init__(use_greyscale=True)
self.block_size = block_size
self.c_low_contrast = c_low_contrast
self.c_high_contrast = c_high_contrast
self.bg_threshold = bg_threshold
self.contrast_threshold = contrast_threshold
def preprocess_image(
self, image: Union[Image.Image, np.ndarray]
) -> Tuple[Image.Image, dict]:
"""Preprocess the image.
:param image: Loaded PIL image.
:return: The processed image and metadata (C, background_color, contrast).
"""
if not isinstance(image, np.ndarray):
image = self.convert_image_to_array(image)
# Determine background color
background_color = self._get_bg_color(image, True)
contrast, _ = self._get_image_contrast(image)
c = (
self.c_low_contrast
if contrast <= self.contrast_threshold
else self.c_high_contrast
)
if background_color < self.bg_threshold:
adaptive_threshold_image = cv2.adaptiveThreshold(
image,
255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY_INV,
self.block_size,
-c,
)
else:
adaptive_threshold_image = cv2.adaptiveThreshold(
image,
255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY,
self.block_size,
c,
)
metadata = {"C": c, "background_color": background_color, "contrast": contrast}
return Image.fromarray(adaptive_threshold_image), metadata
class ImageRescaling(ImagePreprocessor):
"""ImageRescaling class. Rescales images based on their size."""
def __init__(
self,
small_size: int = 1048576,
large_size: int = 4000000,
factor: int = 2,
interpolation: int = cv2.INTER_AREA,
) -> None:
"""Initialize the ImageRescaling class.
:param small_size: Threshold for small image size.
:param large_size: Threshold for large image size.
:param factor: Scaling factor for resizing.
:param interpolation: Interpolation method for resizing.
"""
super().__init__(use_greyscale=True)
self.small_size = small_size
self.large_size = large_size
self.factor = factor
self.interpolation = interpolation
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
"""Preprocess the image to be analyzed.
:param image: Loaded PIL image.
:return: The processed image and metadata (scale_factor).
"""
scale_factor = 1
if image.size < self.small_size:
scale_factor = self.factor
elif image.size > self.large_size:
scale_factor = 1 / self.factor
width = int(image.shape[1] * scale_factor)
height = int(image.shape[0] * scale_factor)
dimensions = (width, height)
# resize image
rescaled_image = cv2.resize(image, dimensions, interpolation=self.interpolation)
metadata = {"scale_factor": scale_factor}
return Image.fromarray(rescaled_image), metadata
class ContrastSegmentedImageEnhancer(ImagePreprocessor):
"""Class containing all logic to perform contrastive segmentation.
Contrastive segmentation is a preprocessing step that aims to enhance the
text in an image by increasing the contrast between the text and the
background. The parameters used to run the preprocessing are selected based
on the contrast level of the image.
"""
def __init__(
self,
bilateral_filter: Optional[BilateralFilter] = None,
adaptive_threshold: Optional[SegmentedAdaptiveThreshold] = None,
image_rescaling: Optional[ImageRescaling] = None,
low_contrast_threshold: int = 40,
) -> None:
"""Initialize the class.
:param bilateral_filter: Optional BilateralFilter instance.
:param adaptive_threshold: Optional AdaptiveThreshold instance.
:param image_rescaling: Optional ImageRescaling instance.
:param low_contrast_threshold: Threshold for low contrast images.
"""
super().__init__(use_greyscale=True)
if not bilateral_filter:
self.bilateral_filter = BilateralFilter()
else:
self.bilateral_filter = bilateral_filter
if not adaptive_threshold:
self.adaptive_threshold = SegmentedAdaptiveThreshold()
else:
self.adaptive_threshold = adaptive_threshold
if not image_rescaling:
self.image_rescaling = ImageRescaling()
else:
self.image_rescaling = image_rescaling
self.low_contrast_threshold = low_contrast_threshold
def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
"""Preprocess the image to be analyzed.
:param image: Loaded PIL image.
:return: The processed image and metadata (background color, scale percentage,
contrast level, and C value).
"""
image = self.convert_image_to_array(image)
# Apply bilateral filtering
filtered_image, _ = self.bilateral_filter.preprocess_image(image)
# Convert to grayscale
pil_filtered_image = Image.fromarray(np.uint8(filtered_image))
pil_grayscale_image = pil_filtered_image.convert("L")
grayscale_image = np.asarray(pil_grayscale_image)
# Improve contrast
adjusted_image, _, adjusted_contrast = self._improve_contrast(grayscale_image)
# Adaptive Thresholding
adaptive_threshold_image, _ = self.adaptive_threshold.preprocess_image(
adjusted_image
)
# Increase contrast
_, threshold_image = cv2.threshold(
np.asarray(adaptive_threshold_image),
0,
255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU,
)
# Rescale image
rescaled_image, scale_metadata = self.image_rescaling.preprocess_image(
threshold_image
)
return rescaled_image, scale_metadata
def _improve_contrast(self, image: np.ndarray) -> Tuple[np.ndarray, str, str]:
"""Improve the contrast of an image based on its initial contrast level.
:param image: Input image.
:return: A tuple containing the improved image, the initial contrast level,
and the adjusted contrast level.
"""
contrast, mean_intensity = self._get_image_contrast(image)
if contrast <= self.low_contrast_threshold:
alpha = 1.5
beta = -mean_intensity * alpha
adjusted_image = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
adjusted_contrast, _ = self._get_image_contrast(adjusted_image)
else:
adjusted_image = image
adjusted_contrast = contrast
return adjusted_image, contrast, adjusted_contrast
def bounding_boxes_overlap(box1, box2):
"""Check if two bounding boxes overlap."""
return (box1[0] < box2[2] and box2[0] < box1[2] and
box1[1] < box2[3] and box2[1] < box1[3])
def map_back_entity_results(page_analyser_result, page_text_mapping, all_text_line_results):
for entity in page_analyser_result:
entity_start = entity.start
entity_end = entity.end
# Track if the entity has been added to any line
added_to_line = False
for batch_start, line_idx, original_line, chars in page_text_mapping:
batch_end = batch_start + len(original_line.text)
# Check if the entity overlaps with the current line
if batch_start < entity_end and batch_end > entity_start: # Overlap condition
relative_start = max(0, entity_start - batch_start) # Adjust start relative to the line
relative_end = min(entity_end - batch_start, len(original_line.text)) # Adjust end relative to the line
# Create a new adjusted entity
adjusted_entity = copy.deepcopy(entity)
adjusted_entity.start = relative_start
adjusted_entity.end = relative_end
# Check if this line already has an entry
existing_entry = next((entry for idx, entry in all_text_line_results if idx == line_idx), None)
if existing_entry is None:
all_text_line_results.append((line_idx, [adjusted_entity]))
else:
existing_entry.append(adjusted_entity) # Append to the existing list of entities
added_to_line = True
# If the entity spans multiple lines, you may want to handle that here
if not added_to_line:
# Handle cases where the entity does not fit in any line (optional)
print(f"Entity '{entity}' does not fit in any line.")
return all_text_line_results
def map_back_comprehend_entity_results(response, current_batch_mapping, allow_list, chosen_redact_comprehend_entities, all_text_line_results):
if not response or "Entities" not in response:
return all_text_line_results
for entity in response["Entities"]:
if entity.get("Type") not in chosen_redact_comprehend_entities:
continue
entity_start = entity["BeginOffset"]
entity_end = entity["EndOffset"]
# Track if the entity has been added to any line
added_to_line = False
# Find the correct line and offset within that line
for batch_start, line_idx, original_line, chars, line_offset in current_batch_mapping:
batch_end = batch_start + len(original_line.text[line_offset:])
# Check if the entity overlaps with the current line
if batch_start < entity_end and batch_end > entity_start: # Overlap condition
# Calculate the absolute position within the line
relative_start = max(0, entity_start - batch_start + line_offset)
relative_end = min(entity_end - batch_start + line_offset, len(original_line.text))
result_text = original_line.text[relative_start:relative_end]
if result_text not in allow_list:
adjusted_entity = entity.copy()
adjusted_entity["BeginOffset"] = relative_start # Now relative to the full line
adjusted_entity["EndOffset"] = relative_end
recogniser_entity = recognizer_result_from_dict(adjusted_entity)
existing_entry = next((entry for idx, entry in all_text_line_results if idx == line_idx), None)
if existing_entry is None:
all_text_line_results.append((line_idx, [recogniser_entity]))
else:
existing_entry.append(recogniser_entity) # Append to the existing list of entities
added_to_line = True
# Optional: Handle cases where the entity does not fit in any line
if not added_to_line:
print(f"Entity '{entity}' does not fit in any line.")
return all_text_line_results
def do_aws_comprehend_call(current_batch, current_batch_mapping, comprehend_client, language, allow_list, chosen_redact_comprehend_entities, all_text_line_results):
if not current_batch:
return all_text_line_results
max_retries = 3
retry_delay = 3
for attempt in range(max_retries):
try:
response = comprehend_client.detect_pii_entities(
Text=current_batch.strip(),
LanguageCode=language
)
all_text_line_results = map_back_comprehend_entity_results(
response,
current_batch_mapping,
allow_list,
chosen_redact_comprehend_entities,
all_text_line_results
)
return all_text_line_results
except Exception as e:
if attempt == max_retries - 1:
print("AWS Comprehend calls failed due to", e)
raise
time.sleep(retry_delay)
def run_page_text_redaction(
language: str,
chosen_redact_entities: List[str],
chosen_redact_comprehend_entities: List[str],
line_level_text_results_list: List[str],
line_characters: List,
page_analyser_results: List = [],
page_analysed_bounding_boxes: List = [],
comprehend_client = None,
allow_list: List[str] = None,
pii_identification_method: str = "Local",
nlp_analyser = None,
score_threshold: float = 0.0,
custom_entities: List[str] = None,
comprehend_query_number:int = 0#,
#merge_text_bounding_boxes_fn = merge_text_bounding_boxes
):
#if not merge_text_bounding_boxes_fn:
# raise ValueError("merge_text_bounding_boxes_fn is required")
page_text = ""
page_text_mapping = []
all_text_line_results = []
comprehend_query_number = 0
# Collect all text from the page
for i, text_line in enumerate(line_level_text_results_list):
#print("line_level_text_results_list:", line_level_text_results_list)
if chosen_redact_entities:
if page_text:
#page_text += " | "
page_text += " "
start_pos = len(page_text)
page_text += text_line.text
page_text_mapping.append((start_pos, i, text_line, line_characters[i]))
# Process based on identification method
if pii_identification_method == "Local":
if not nlp_analyser:
raise ValueError("nlp_analyser is required for Local identification method")
#print("page text:", page_text)
page_analyser_result = nlp_analyser.analyze(
text=page_text,
language=language,
entities=chosen_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list
)
all_text_line_results = map_back_entity_results(
page_analyser_result,
page_text_mapping,
all_text_line_results
)
elif pii_identification_method == "AWS Comprehend":
# Process custom entities if any
if custom_entities:
custom_redact_entities = [
entity for entity in chosen_redact_comprehend_entities
if entity in custom_entities
]
if custom_redact_entities:
page_analyser_result = nlp_analyser.analyze(
text=page_text,
language=language,
entities=custom_redact_entities,
score_threshold=score_threshold,
return_decision_process=True,
allow_list=allow_list
)
all_text_line_results = map_back_entity_results(
page_analyser_result,
page_text_mapping,
all_text_line_results
)
current_batch = ""
current_batch_mapping = []
batch_char_count = 0
batch_word_count = 0
for i, text_line in enumerate(line_level_text_results_list):
words = text_line.text.split()
word_start_positions = []
# Calculate word start positions within the line
current_pos = 0
for word in words:
word_start_positions.append(current_pos)
current_pos += len(word) + 1 # +1 for space
for word_idx, word in enumerate(words):
new_batch_char_count = len(current_batch) + len(word) + 1
if batch_word_count >= 50 or new_batch_char_count >= 200:
# Process current batch
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
language,
allow_list,
chosen_redact_comprehend_entities,
all_text_line_results
)
comprehend_query_number += 1
# Start new batch
current_batch = word
batch_word_count = 1
batch_char_count = len(word)
current_batch_mapping = [(0, i, text_line, line_characters[i], word_start_positions[word_idx])]
else:
if current_batch:
current_batch += " "
batch_char_count += 1
current_batch += word
batch_char_count += len(word)
batch_word_count += 1
if not current_batch_mapping or current_batch_mapping[-1][1] != i:
current_batch_mapping.append((
batch_char_count - len(word),
i,
text_line,
line_characters[i],
word_start_positions[word_idx] # Add the word's start position within its line
))
# Process final batch
if current_batch:
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
language,
allow_list,
chosen_redact_comprehend_entities,
all_text_line_results
)
comprehend_query_number += 1
# Process results for each line
for i, text_line in enumerate(line_level_text_results_list):
line_results = next((results for idx, results in all_text_line_results if idx == i), [])
if line_results:
text_line_bounding_boxes = merge_text_bounding_boxes(
line_results,
line_characters[i]
)
page_analyser_results.extend(line_results)
page_analysed_bounding_boxes.extend(text_line_bounding_boxes)
return page_analysed_bounding_boxes
def merge_text_bounding_boxes(analyser_results, characters: List[LTChar], combine_pixel_dist: int = 20, vertical_padding: int = 0):
'''
Merge identified bounding boxes containing PII that are very close to one another
'''
analysed_bounding_boxes = []
original_bounding_boxes = [] # List to hold original bounding boxes
if len(analyser_results) > 0 and len(characters) > 0:
# Extract bounding box coordinates for sorting
bounding_boxes = []
for result in analyser_results:
#print("Result:", result)
char_boxes = [char.bbox for char in characters[result.start:result.end] if isinstance(char, LTChar)]
char_text = [char._text for char in characters[result.start:result.end] if isinstance(char, LTChar)]
if char_boxes:
# Calculate the bounding box that encompasses all characters
left = min(box[0] for box in char_boxes)
bottom = min(box[1] for box in char_boxes)
right = max(box[2] for box in char_boxes)
top = max(box[3] for box in char_boxes) + vertical_padding
bbox = [left, bottom, right, top]
bounding_boxes.append((bottom, left, result, bbox, char_text)) # (y, x, result, bbox, text)
# Store original bounding boxes
original_bounding_boxes.append({"text": "".join(char_text), "boundingBox": bbox, "result": copy.deepcopy(result)})
#print("Original bounding boxes:", original_bounding_boxes)
# Sort the results by y-coordinate and then by x-coordinate
bounding_boxes.sort()
merged_bounding_boxes = []
current_box = None
current_y = None
current_result = None
current_text = []
for y, x, result, next_box, text in bounding_boxes:
if current_y is None or current_box is None:
# Initialize the first bounding box
current_box = next_box
current_y = next_box[1]
current_result = result
current_text = list(text)
else:
vertical_diff_bboxes = abs(next_box[1] - current_y)
horizontal_diff_bboxes = abs(next_box[0] - current_box[2])
if vertical_diff_bboxes <= 5 and horizontal_diff_bboxes <= combine_pixel_dist:
# Merge bounding boxes
#print("Merging boxes")
merged_box = current_box.copy()
merged_result = current_result
merged_text = current_text.copy()
merged_box[2] = next_box[2] # Extend horizontally
merged_box[3] = max(current_box[3], next_box[3]) # Adjust the top
merged_result.end = max(current_result.end, result.end) # Extend text range
try:
if current_result.entity_type != result.entity_type:
merged_result.entity_type = current_result.entity_type + " - " + result.entity_type
else:
merged_result.entity_type = current_result.entity_type
except Exception as e:
print("Unable to combine result entity types:", e)
if current_text:
merged_text.append(" ") # Add space between texts
merged_text.extend(text)
merged_bounding_boxes.append({
"text": "".join(merged_text),
"boundingBox": merged_box,
"result": merged_result
})
else:
# Start a new bounding box
current_box = next_box
current_y = next_box[1]
current_result = result
current_text = list(text)
# Combine original and merged bounding boxes
analysed_bounding_boxes.extend(original_bounding_boxes)
analysed_bounding_boxes.extend(merged_bounding_boxes)
#print("Analysed bounding boxes:", analysed_bounding_boxes)
return analysed_bounding_boxes
# Function to combine OCR results into line-level results
def combine_ocr_results(ocr_results, x_threshold=50, y_threshold=12):
# Group OCR results into lines based on y_threshold
lines = []
current_line = []
for result in sorted(ocr_results, key=lambda x: x.top):
if not current_line or abs(result.top - current_line[0].top) <= y_threshold:
current_line.append(result)
else:
lines.append(current_line)
current_line = [result]
if current_line:
lines.append(current_line)
# Sort each line by left position
for line in lines:
line.sort(key=lambda x: x.left)
# Flatten the sorted lines back into a single list
sorted_results = [result for line in lines for result in line]
combined_results = []
new_format_results = {}
current_line = []
current_bbox = None
line_counter = 1
def create_ocr_result_with_children(combined_results, i, current_bbox, current_line):
combined_results["text_line_" + str(i)] = {
"line": i,
'text': current_bbox.text,
'bounding_box': (current_bbox.left, current_bbox.top,
current_bbox.left + current_bbox.width,
current_bbox.top + current_bbox.height),
'words': [{'text': word.text,
'bounding_box': (word.left, word.top,
word.left + word.width,
word.top + word.height)}
for word in current_line]
}
return combined_results["text_line_" + str(i)]
for result in sorted_results:
if not current_line:
# Start a new line
current_line.append(result)
current_bbox = result
else:
# Check if the result is on the same line (y-axis) and close horizontally (x-axis)
last_result = current_line[-1]
if abs(result.top - last_result.top) <= y_threshold and \
(result.left - (last_result.left + last_result.width)) <= x_threshold:
# Update the bounding box to include the new word
new_right = max(current_bbox.left + current_bbox.width, result.left + result.width)
current_bbox = OCRResult(
text=f"{current_bbox.text} {result.text}",
left=current_bbox.left,
top=current_bbox.top,
width=new_right - current_bbox.left,
height=max(current_bbox.height, result.height)
)
current_line.append(result)
else:
# Commit the current line and start a new one
combined_results.append(current_bbox)
new_format_results["text_line_" + str(line_counter)] = create_ocr_result_with_children(new_format_results, line_counter, current_bbox, current_line)
line_counter += 1
current_line = [result]
current_bbox = result
# Append the last line
if current_bbox:
combined_results.append(current_bbox)
new_format_results["text_line_" + str(line_counter)] = create_ocr_result_with_children(new_format_results, line_counter, current_bbox, current_line)
return combined_results, new_format_results
class CustomImageAnalyzerEngine:
def __init__(
self,
analyzer_engine: Optional[AnalyzerEngine] = None,
tesseract_config: Optional[str] = None,
image_preprocessor: Optional[ImagePreprocessor] = None
):
if not analyzer_engine:
analyzer_engine = AnalyzerEngine()
self.analyzer_engine = analyzer_engine
self.tesseract_config = tesseract_config or '--oem 3 --psm 11'
if not image_preprocessor:
image_preprocessor = ContrastSegmentedImageEnhancer()
#print(image_preprocessor)
self.image_preprocessor = image_preprocessor
def perform_ocr(self, image: Union[str, Image.Image, np.ndarray]) -> List[OCRResult]:
# Ensure image is a PIL Image
if isinstance(image, str):
image = Image.open(image)
elif isinstance(image, np.ndarray):
image = Image.fromarray(image)
image_processed, preprocessing_metadata = self.image_preprocessor.preprocess_image(image)
ocr_data = pytesseract.image_to_data(image_processed, output_type=pytesseract.Output.DICT, config=self.tesseract_config)
if preprocessing_metadata and ("scale_factor" in preprocessing_metadata):
ocr_result = self._scale_bbox_results(
ocr_data, preprocessing_metadata["scale_factor"]
)
ocr_result = self.remove_space_boxes(ocr_result)
# Filter out empty strings and low confidence results
valid_indices = [i for i, text in enumerate(ocr_result['text']) if text.strip() and int(ocr_result['conf'][i]) > 0]
return [
OCRResult(
text=clean_unicode_text(ocr_result['text'][i]),
left=ocr_result['left'][i],
top=ocr_result['top'][i],
width=ocr_result['width'][i],
height=ocr_result['height'][i]
)
for i in valid_indices
]
def analyze_text(
self,
line_level_ocr_results: List[OCRResult],
ocr_results_with_children: Dict[str, Dict],
chosen_redact_comprehend_entities: List[str],
pii_identification_method: str = "Local",
comprehend_client = "",
**text_analyzer_kwargs
) -> List[CustomImageRecognizerResult]:
page_text = ""
page_text_mapping = []
all_text_line_results = []
comprehend_query_number = 0
# Collect all text and create mapping
for i, line_level_ocr_result in enumerate(line_level_ocr_results):
if page_text:
page_text += " "
start_pos = len(page_text)
page_text += line_level_ocr_result.text
# Note: We're not passing line_characters here since it's not needed for this use case
page_text_mapping.append((start_pos, i, line_level_ocr_result, None))
# Process using either Local or AWS Comprehend
if pii_identification_method == "Local":
analyzer_result = self.analyzer_engine.analyze(
text=page_text,
**text_analyzer_kwargs
)
all_text_line_results = map_back_entity_results(
analyzer_result,
page_text_mapping,
all_text_line_results
)
elif pii_identification_method == "AWS Comprehend":
# Handle custom entities first
if custom_entities:
custom_redact_entities = [
entity for entity in chosen_redact_comprehend_entities
if entity in custom_entities
]
if custom_redact_entities:
text_analyzer_kwargs["entities"] = custom_redact_entities
page_analyser_result = self.analyzer_engine.analyze(
text=page_text,
**text_analyzer_kwargs
)
all_text_line_results = map_back_entity_results(
page_analyser_result,
page_text_mapping,
all_text_line_results
)
# Process text in batches for AWS Comprehend
current_batch = ""
current_batch_mapping = []
batch_char_count = 0
batch_word_count = 0
for i, text_line in enumerate(line_level_ocr_results):
words = text_line.text.split()
word_start_positions = []
current_pos = 0
for word in words:
word_start_positions.append(current_pos)
current_pos += len(word) + 1
for word_idx, word in enumerate(words):
new_batch_char_count = len(current_batch) + len(word) + 1
if batch_word_count >= 50 or new_batch_char_count >= 200:
# Process current batch
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
text_analyzer_kwargs["language"],
text_analyzer_kwargs.get('allow_list', []),
chosen_redact_comprehend_entities,
all_text_line_results
)
comprehend_query_number += 1
# Reset batch
current_batch = word
batch_word_count = 1
batch_char_count = len(word)
current_batch_mapping = [(0, i, text_line, None, word_start_positions[word_idx])]
else:
if current_batch:
current_batch += " "
batch_char_count += 1
current_batch += word
batch_char_count += len(word)
batch_word_count += 1
if not current_batch_mapping or current_batch_mapping[-1][1] != i:
current_batch_mapping.append((
batch_char_count - len(word),
i,
text_line,
None,
word_start_positions[word_idx]
))
# Process final batch if any
if current_batch:
all_text_line_results = do_aws_comprehend_call(
current_batch,
current_batch_mapping,
comprehend_client,
text_analyzer_kwargs["language"],
text_analyzer_kwargs.get('allow_list', []),
chosen_redact_comprehend_entities,
all_text_line_results
)
comprehend_query_number += 1
# Process results and create bounding boxes
combined_results = []
for i, text_line in enumerate(line_level_ocr_results):
line_results = next((results for idx, results in all_text_line_results if idx == i), [])
if line_results and i < len(ocr_results_with_children):
child_level_key = list(ocr_results_with_children.keys())[i]
ocr_results_with_children_line_level = ocr_results_with_children[child_level_key]
for result in line_results:
bbox_results = self.map_analyzer_results_to_bounding_boxes(
[result],
[OCRResult(
text=text_line.text[result.start:result.end],
left=text_line.left,
top=text_line.top,
width=text_line.width,
height=text_line.height
)],
text_line.text,
text_analyzer_kwargs.get('allow_list', []),
ocr_results_with_children_line_level
)
combined_results.extend(bbox_results)
return combined_results, comprehend_query_number
@staticmethod
def map_analyzer_results_to_bounding_boxes(
text_analyzer_results: List[RecognizerResult],
redaction_relevant_ocr_results: List[OCRResult],
full_text: str,
allow_list: List[str],
ocr_results_with_children_child_info: Dict[str, Dict]
) -> List[CustomImageRecognizerResult]:
redaction_bboxes = []
for redaction_relevant_ocr_result in redaction_relevant_ocr_results:
#print("ocr_results_with_children_child_info:", ocr_results_with_children_child_info)
line_text = ocr_results_with_children_child_info['text']
line_length = len(line_text)
redaction_text = redaction_relevant_ocr_result.text
#print(f"Processing line: '{line_text}'")
for redaction_result in text_analyzer_results:
#print(f"Checking redaction result: {redaction_result}")
#print("redaction_text:", redaction_text)
#print("line_length:", line_length)
#print("line_text:", line_text)
# Check if the redaction text is not in the allow list
if redaction_text not in allow_list:
# Adjust start and end to be within line bounds
start_in_line = max(0, redaction_result.start)
end_in_line = min(line_length, redaction_result.end)
# Get the matched text from this line
matched_text = line_text[start_in_line:end_in_line]
matched_words = matched_text.split()
# print(f"Found match: '{matched_text}' in line")
# for word_info in ocr_results_with_children_child_info.get('words', []):
# # Check if this word is part of our match
# if any(word.lower() in word_info['text'].lower() for word in matched_words):
# matching_word_boxes.append(word_info['bounding_box'])
# print(f"Matched word: {word_info['text']}")
# Find the corresponding words in the OCR results
matching_word_boxes = []
#print("ocr_results_with_children_child_info:", ocr_results_with_children_child_info)
current_position = 0
for word_info in ocr_results_with_children_child_info.get('words', []):
word_text = word_info['text']
word_length = len(word_text)
# Assign start and end character positions
#word_info['start_position'] = current_position
#word_info['end_position'] = current_position + word_length
word_start = current_position
word_end = current_position + word_length
# Update current position for the next word
current_position += word_length + 1 # +1 for the space after the word
#print("word_info['bounding_box']:", word_info['bounding_box'])
#print("word_start:", word_start)
#print("start_in_line:", start_in_line)
#print("word_end:", word_end)
#print("end_in_line:", end_in_line)
# Check if the word's bounding box is within the start and end bounds
if word_start >= start_in_line and word_end <= (end_in_line + 1):
matching_word_boxes.append(word_info['bounding_box'])
#print(f"Matched word: {word_info['text']}")
if matching_word_boxes:
# Calculate the combined bounding box for all matching words
left = min(box[0] for box in matching_word_boxes)
top = min(box[1] for box in matching_word_boxes)
right = max(box[2] for box in matching_word_boxes)
bottom = max(box[3] for box in matching_word_boxes)
redaction_bboxes.append(
CustomImageRecognizerResult(
entity_type=redaction_result.entity_type,
start=start_in_line,
end=end_in_line,
score=redaction_result.score,
left=left,
top=top,
width=right - left,
height=bottom - top,
text=matched_text
)
)
#print(f"Added bounding box for: '{matched_text}'")
return redaction_bboxes
@staticmethod
def remove_space_boxes(ocr_result: dict) -> dict:
"""Remove OCR bboxes that are for spaces.
:param ocr_result: OCR results (raw or thresholded).
:return: OCR results with empty words removed.
"""
# Get indices of items with no text
idx = list()
for i, text in enumerate(ocr_result["text"]):
is_not_space = text.isspace() is False
if text != "" and is_not_space:
idx.append(i)
# Only retain items with text
filtered_ocr_result = {}
for key in list(ocr_result.keys()):
filtered_ocr_result[key] = [ocr_result[key][i] for i in idx]
return filtered_ocr_result
@staticmethod
def _scale_bbox_results(
ocr_result: Dict[str, List[Union[int, str]]], scale_factor: float
) -> Dict[str, float]:
"""Scale down the bounding box results based on a scale percentage.
:param ocr_result: OCR results (raw).
:param scale_percent: Scale percentage for resizing the bounding box.
:return: OCR results (scaled).
"""
scaled_results = deepcopy(ocr_result)
coordinate_keys = ["left", "top"]
dimension_keys = ["width", "height"]
for coord_key in coordinate_keys:
scaled_results[coord_key] = [
int(np.ceil((x) / (scale_factor))) for x in scaled_results[coord_key]
]
for dim_key in dimension_keys:
scaled_results[dim_key] = [
max(1, int(np.ceil(x / (scale_factor))))
for x in scaled_results[dim_key]
]
return scaled_results
@staticmethod
def estimate_x_offset(full_text: str, start: int) -> int:
# Estimate the x-offset based on character position
# This is a simple estimation and might need refinement for variable-width fonts
return int(start / len(full_text) * len(full_text))
def estimate_width(self, ocr_result: OCRResult, start: int, end: int) -> int:
# Extract the relevant text portion
relevant_text = ocr_result.text[start:end]
# If the relevant text is the same as the full text, return the full width
if relevant_text == ocr_result.text:
return ocr_result.width
# Estimate width based on the proportion of the relevant text length to the total text length
total_text_length = len(ocr_result.text)
relevant_text_length = len(relevant_text)
if total_text_length == 0:
return 0 # Avoid division by zero
# Proportion of the relevant text to the total text
proportion = relevant_text_length / total_text_length
# Estimate the width based on the proportion
estimated_width = int(proportion * ocr_result.width)
return estimated_width
|