File size: 48,996 Bytes
e9c4101
 
 
 
 
390bef2
8652429
cb349ad
 
 
8652429
cb349ad
8652429
eea5c07
f0f9378
ec98119
e9c4101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8652429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c83c0
 
 
 
cb349ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391712c
cb349ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bde6e5b
cb349ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c83c0
e9c4101
 
 
 
8652429
 
e9c4101
 
 
 
 
 
8652429
 
a748df6
8652429
 
e9c4101
 
 
 
 
 
 
8652429
 
 
 
 
 
 
 
 
 
e9c4101
 
8652429
e9c4101
 
 
eea5c07
8652429
 
 
 
e9c4101
 
 
 
 
 
84c83c0
a748df6
cb349ad
 
 
e9c4101
 
84c83c0
cb349ad
 
 
8235bbb
f0f9378
cb349ad
542c252
cb349ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0f9378
cb349ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec98119
cb349ad
 
 
 
 
ec98119
cb349ad
 
 
 
6ac4be4
cb349ad
 
 
ec98119
cb349ad
 
542c252
cb349ad
 
 
 
 
 
 
 
 
 
 
542c252
 
 
cb349ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542c252
cb349ad
a748df6
cb349ad
 
 
 
 
542c252
 
cb349ad
 
 
 
 
 
 
 
 
 
 
 
 
 
542c252
cb349ad
6ea0852
8235bbb
e9c4101
 
 
cb349ad
 
 
 
 
 
84c83c0
e9c4101
84c83c0
cb349ad
a748df6
cb349ad
 
 
84c83c0
bde6e5b
cb349ad
84c83c0
bde6e5b
 
 
 
cb349ad
bde6e5b
cb349ad
 
 
 
 
 
 
 
 
 
 
 
bde6e5b
 
 
 
 
 
cb349ad
 
 
bde6e5b
 
 
 
 
cb349ad
bde6e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb349ad
bde6e5b
cb349ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c4101
bde6e5b
e9c4101
84c83c0
8652429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ea0852
 
 
 
 
 
8652429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
import pytesseract
import numpy as np
from presidio_analyzer import AnalyzerEngine, RecognizerResult
from typing import List, Dict, Optional, Union, Tuple
from dataclasses import dataclass
import time
import cv2
import copy
from copy import deepcopy
from pdfminer.layout import LTChar
import PIL
from PIL import Image
from typing import Optional, Tuple, Union
from tools.helper_functions import clean_unicode_text
from tools.presidio_analyzer_custom import recognizer_result_from_dict
from tools.load_spacy_model_custom_recognisers import custom_entities

@dataclass
class OCRResult:
    text: str
    left: int
    top: int
    width: int
    height: int

@dataclass
class CustomImageRecognizerResult:
    entity_type: str
    start: int
    end: int
    score: float
    left: int
    top: int
    width: int
    height: int
    text: str

class ImagePreprocessor:
    """ImagePreprocessor class.

    Parent class for image preprocessing objects.
    """

    def __init__(self, use_greyscale: bool = True) -> None:
        """Initialize the ImagePreprocessor class.

        :param use_greyscale: Whether to convert the image to greyscale.
        """
        self.use_greyscale = use_greyscale

    def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
        """Preprocess the image to be analyzed.

        :param image: Loaded PIL image.

        :return: The processed image and any metadata regarding the
             preprocessing approach.
        """
        return image, {}

    def convert_image_to_array(self, image: Image.Image) -> np.ndarray:
        """Convert PIL image to numpy array.

        :param image: Loaded PIL image.
        :param convert_to_greyscale: Whether to convert the image to greyscale.

        :return: image pixels as a numpy array.

        """

        if isinstance(image, np.ndarray):
            img = image
        else:
            if self.use_greyscale:
                image = image.convert("L")
            img = np.asarray(image)
        return img

    @staticmethod
    def _get_bg_color(
        image: Image.Image, is_greyscale: bool, invert: bool = False
    ) -> Union[int, Tuple[int, int, int]]:
        """Select most common color as background color.

        :param image: Loaded PIL image.
        :param is_greyscale: Whether the image is greyscale.
        :param invert: TRUE if you want to get the inverse of the bg color.

        :return: Background color.
        """
        # Invert colors if invert flag is True
        if invert:
            if image.mode == "RGBA":
                # Handle transparency as needed
                r, g, b, a = image.split()
                rgb_image = Image.merge("RGB", (r, g, b))
                inverted_image = PIL.ImageOps.invert(rgb_image)
                r2, g2, b2 = inverted_image.split()

                image = Image.merge("RGBA", (r2, g2, b2, a))

            else:
                image = PIL.ImageOps.invert(image)

        # Get background color
        if is_greyscale:
            # Select most common color as color
            bg_color = int(np.bincount(image.flatten()).argmax())
        else:
            # Reduce size of image to 1 pixel to get dominant color
            tmp_image = image.copy()
            tmp_image = tmp_image.resize((1, 1), resample=0)
            bg_color = tmp_image.getpixel((0, 0))

        return bg_color

    @staticmethod
    def _get_image_contrast(image: np.ndarray) -> Tuple[float, float]:
        """Compute the contrast level and mean intensity of an image.

        :param image: Input image pixels (as a numpy array).

        :return: A tuple containing the contrast level and mean intensity of the image.
        """
        contrast = np.std(image)
        mean_intensity = np.mean(image)
        return contrast, mean_intensity
    
class BilateralFilter(ImagePreprocessor):
    """BilateralFilter class.

    The class applies bilateral filtering to an image. and returns the filtered
    image and metadata.
    """

    def __init__(
        self, diameter: int = 3, sigma_color: int = 40, sigma_space: int = 40
    ) -> None:
        """Initialize the BilateralFilter class.

        :param diameter: Diameter of each pixel neighborhood.
        :param sigma_color: value of sigma in the color space.
        :param sigma_space: value of sigma in the coordinate space.
        """
        super().__init__(use_greyscale=True)

        self.diameter = diameter
        self.sigma_color = sigma_color
        self.sigma_space = sigma_space

    def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
        """Preprocess the image to be analyzed.

        :param image: Loaded PIL image.

        :return: The processed image and metadata (diameter, sigma_color, sigma_space).
        """
        image = self.convert_image_to_array(image)

        # Apply bilateral filtering
        filtered_image = cv2.bilateralFilter(
            image,
            self.diameter,
            self.sigma_color,
            self.sigma_space,
        )

        metadata = {
            "diameter": self.diameter,
            "sigma_color": self.sigma_color,
            "sigma_space": self.sigma_space,
        }

        return Image.fromarray(filtered_image), metadata

class SegmentedAdaptiveThreshold(ImagePreprocessor):
    """SegmentedAdaptiveThreshold class.

    The class applies adaptive thresholding to an image
    and returns the thresholded image and metadata.
    The parameters used to run the adaptivethresholding are selected based on
    the contrast level of the image.
    """

    def __init__(
        self,
        block_size: int = 5,
        contrast_threshold: int = 40,
        c_low_contrast: int = 10,
        c_high_contrast: int = 40,
        bg_threshold: int = 122,
    ) -> None:
        """Initialize the SegmentedAdaptiveThreshold class.

        :param block_size: Size of the neighborhood area for threshold calculation.
        :param contrast_threshold: Threshold for low contrast images.
        :param C_low_contrast: Constant added to the mean for low contrast images.
        :param C_high_contrast: Constant added to the mean for high contrast images.
        :param bg_threshold: Threshold for background color.
        """

        super().__init__(use_greyscale=True)
        self.block_size = block_size
        self.c_low_contrast = c_low_contrast
        self.c_high_contrast = c_high_contrast
        self.bg_threshold = bg_threshold
        self.contrast_threshold = contrast_threshold

    def preprocess_image(
        self, image: Union[Image.Image, np.ndarray]
    ) -> Tuple[Image.Image, dict]:
        """Preprocess the image.

        :param image: Loaded PIL image.

        :return: The processed image and metadata (C, background_color, contrast).
        """
        if not isinstance(image, np.ndarray):
            image = self.convert_image_to_array(image)

        # Determine background color
        background_color = self._get_bg_color(image, True)
        contrast, _ = self._get_image_contrast(image)

        c = (
            self.c_low_contrast
            if contrast <= self.contrast_threshold
            else self.c_high_contrast
        )

        if background_color < self.bg_threshold:
            adaptive_threshold_image = cv2.adaptiveThreshold(
                image,
                255,
                cv2.ADAPTIVE_THRESH_MEAN_C,
                cv2.THRESH_BINARY_INV,
                self.block_size,
                -c,
            )
        else:
            adaptive_threshold_image = cv2.adaptiveThreshold(
                image,
                255,
                cv2.ADAPTIVE_THRESH_MEAN_C,
                cv2.THRESH_BINARY,
                self.block_size,
                c,
            )

        metadata = {"C": c, "background_color": background_color, "contrast": contrast}
        return Image.fromarray(adaptive_threshold_image), metadata
    
class ImageRescaling(ImagePreprocessor):
    """ImageRescaling class. Rescales images based on their size."""

    def __init__(
        self,
        small_size: int = 1048576,
        large_size: int = 4000000,
        factor: int = 2,
        interpolation: int = cv2.INTER_AREA,
    ) -> None:
        """Initialize the ImageRescaling class.

        :param small_size: Threshold for small image size.
        :param large_size: Threshold for large image size.
        :param factor: Scaling factor for resizing.
        :param interpolation: Interpolation method for resizing.
        """
        super().__init__(use_greyscale=True)

        self.small_size = small_size
        self.large_size = large_size
        self.factor = factor
        self.interpolation = interpolation

    def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
        """Preprocess the image to be analyzed.

        :param image: Loaded PIL image.

        :return: The processed image and metadata (scale_factor).
        """

        scale_factor = 1
        if image.size < self.small_size:
            scale_factor = self.factor
        elif image.size > self.large_size:
            scale_factor = 1 / self.factor

        width = int(image.shape[1] * scale_factor)
        height = int(image.shape[0] * scale_factor)
        dimensions = (width, height)

        # resize image
        rescaled_image = cv2.resize(image, dimensions, interpolation=self.interpolation)
        metadata = {"scale_factor": scale_factor}
        return Image.fromarray(rescaled_image), metadata

class ContrastSegmentedImageEnhancer(ImagePreprocessor):
    """Class containing all logic to perform contrastive segmentation.

    Contrastive segmentation is a preprocessing step that aims to enhance the
    text in an image by increasing the contrast between the text and the
    background. The parameters used to run the preprocessing are selected based
    on the contrast level of the image.
    """

    def __init__(
        self,
        bilateral_filter: Optional[BilateralFilter] = None,
        adaptive_threshold: Optional[SegmentedAdaptiveThreshold] = None,
        image_rescaling: Optional[ImageRescaling] = None,
        low_contrast_threshold: int = 40,
    ) -> None:
        """Initialize the class.

        :param bilateral_filter: Optional BilateralFilter instance.
        :param adaptive_threshold: Optional AdaptiveThreshold instance.
        :param image_rescaling: Optional ImageRescaling instance.
        :param low_contrast_threshold: Threshold for low contrast images.
        """

        super().__init__(use_greyscale=True)
        if not bilateral_filter:
            self.bilateral_filter = BilateralFilter()
        else:
            self.bilateral_filter = bilateral_filter

        if not adaptive_threshold:
            self.adaptive_threshold = SegmentedAdaptiveThreshold()
        else:
            self.adaptive_threshold = adaptive_threshold

        if not image_rescaling:
            self.image_rescaling = ImageRescaling()
        else:
            self.image_rescaling = image_rescaling

        self.low_contrast_threshold = low_contrast_threshold

    def preprocess_image(self, image: Image.Image) -> Tuple[Image.Image, dict]:
        """Preprocess the image to be analyzed.

        :param image: Loaded PIL image.

        :return: The processed image and metadata (background color, scale percentage,
             contrast level, and C value).
        """
        image = self.convert_image_to_array(image)

        # Apply bilateral filtering
        filtered_image, _ = self.bilateral_filter.preprocess_image(image)

        # Convert to grayscale
        pil_filtered_image = Image.fromarray(np.uint8(filtered_image))
        pil_grayscale_image = pil_filtered_image.convert("L")
        grayscale_image = np.asarray(pil_grayscale_image)

        # Improve contrast
        adjusted_image, _, adjusted_contrast = self._improve_contrast(grayscale_image)

        # Adaptive Thresholding
        adaptive_threshold_image, _ = self.adaptive_threshold.preprocess_image(
            adjusted_image
        )
        # Increase contrast
        _, threshold_image = cv2.threshold(
            np.asarray(adaptive_threshold_image),
            0,
            255,
            cv2.THRESH_BINARY | cv2.THRESH_OTSU,
        )

        # Rescale image
        rescaled_image, scale_metadata = self.image_rescaling.preprocess_image(
            threshold_image
        )

        return rescaled_image, scale_metadata

    def _improve_contrast(self, image: np.ndarray) -> Tuple[np.ndarray, str, str]:
        """Improve the contrast of an image based on its initial contrast level.

        :param image: Input image.

        :return: A tuple containing the improved image, the initial contrast level,
             and the adjusted contrast level.
        """
        contrast, mean_intensity = self._get_image_contrast(image)

        if contrast <= self.low_contrast_threshold:
            alpha = 1.5
            beta = -mean_intensity * alpha
            adjusted_image = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)
            adjusted_contrast, _ = self._get_image_contrast(adjusted_image)
        else:
            adjusted_image = image
            adjusted_contrast = contrast
        return adjusted_image, contrast, adjusted_contrast

def bounding_boxes_overlap(box1, box2):
    """Check if two bounding boxes overlap."""
    return (box1[0] < box2[2] and box2[0] < box1[2] and
            box1[1] < box2[3] and box2[1] < box1[3])
   
def map_back_entity_results(page_analyser_result, page_text_mapping, all_text_line_results):
    for entity in page_analyser_result:
        entity_start = entity.start
        entity_end = entity.end
        
        # Track if the entity has been added to any line
        added_to_line = False
        
        for batch_start, line_idx, original_line, chars in page_text_mapping:
            batch_end = batch_start + len(original_line.text)
            
            # Check if the entity overlaps with the current line
            if batch_start < entity_end and batch_end > entity_start:  # Overlap condition
                relative_start = max(0, entity_start - batch_start)  # Adjust start relative to the line
                relative_end = min(entity_end - batch_start, len(original_line.text))  # Adjust end relative to the line
                
                # Create a new adjusted entity
                adjusted_entity = copy.deepcopy(entity)
                adjusted_entity.start = relative_start
                adjusted_entity.end = relative_end
                
                # Check if this line already has an entry
                existing_entry = next((entry for idx, entry in all_text_line_results if idx == line_idx), None)
                
                if existing_entry is None:
                    all_text_line_results.append((line_idx, [adjusted_entity]))
                else:
                    existing_entry.append(adjusted_entity)  # Append to the existing list of entities
                
                added_to_line = True
        
        # If the entity spans multiple lines, you may want to handle that here
        if not added_to_line:
            # Handle cases where the entity does not fit in any line (optional)
            print(f"Entity '{entity}' does not fit in any line.")

    return all_text_line_results

def map_back_comprehend_entity_results(response, current_batch_mapping, allow_list, chosen_redact_comprehend_entities, all_text_line_results):
    if not response or "Entities" not in response:
        return all_text_line_results

    for entity in response["Entities"]:
        if entity.get("Type") not in chosen_redact_comprehend_entities:
            continue

        entity_start = entity["BeginOffset"]
        entity_end = entity["EndOffset"]

        # Track if the entity has been added to any line
        added_to_line = False

        # Find the correct line and offset within that line
        for batch_start, line_idx, original_line, chars, line_offset in current_batch_mapping:
            batch_end = batch_start + len(original_line.text[line_offset:])

            # Check if the entity overlaps with the current line
            if batch_start < entity_end and batch_end > entity_start:  # Overlap condition
                # Calculate the absolute position within the line
                relative_start = max(0, entity_start - batch_start + line_offset)
                relative_end = min(entity_end - batch_start + line_offset, len(original_line.text))

                result_text = original_line.text[relative_start:relative_end]

                if result_text not in allow_list:
                    adjusted_entity = entity.copy()
                    adjusted_entity["BeginOffset"] = relative_start  # Now relative to the full line
                    adjusted_entity["EndOffset"] = relative_end

                    recogniser_entity = recognizer_result_from_dict(adjusted_entity)

                    existing_entry = next((entry for idx, entry in all_text_line_results if idx == line_idx), None)
                    if existing_entry is None:
                        all_text_line_results.append((line_idx, [recogniser_entity]))
                    else:
                        existing_entry.append(recogniser_entity)  # Append to the existing list of entities

                added_to_line = True

        # Optional: Handle cases where the entity does not fit in any line
        if not added_to_line:
            print(f"Entity '{entity}' does not fit in any line.")

    return all_text_line_results

def do_aws_comprehend_call(current_batch, current_batch_mapping, comprehend_client, language, allow_list, chosen_redact_comprehend_entities, all_text_line_results):
    if not current_batch:
        return all_text_line_results

    max_retries = 3
    retry_delay = 3

    for attempt in range(max_retries):
        try:
            response = comprehend_client.detect_pii_entities(
                Text=current_batch.strip(),
                LanguageCode=language
            )

            all_text_line_results = map_back_comprehend_entity_results(
                response, 
                current_batch_mapping, 
                allow_list, 
                chosen_redact_comprehend_entities, 
                all_text_line_results
            )

            return all_text_line_results
    
        except Exception as e:
            if attempt == max_retries - 1:
                print("AWS Comprehend calls failed due to", e)
                raise
            time.sleep(retry_delay)

def run_page_text_redaction(
    language: str,
    chosen_redact_entities: List[str],
    chosen_redact_comprehend_entities: List[str],
    line_level_text_results_list: List[str],
    line_characters: List,
    page_analyser_results: List = [],
    page_analysed_bounding_boxes: List = [],
    comprehend_client = None,
    allow_list: List[str] = None,
    pii_identification_method: str = "Local",
    nlp_analyser = None,
    score_threshold: float = 0.0,
    custom_entities: List[str] = None,
    comprehend_query_number:int = 0#,
    #merge_text_bounding_boxes_fn = merge_text_bounding_boxes
):
    #if not merge_text_bounding_boxes_fn:
    #    raise ValueError("merge_text_bounding_boxes_fn is required")
    
    page_text = ""
    page_text_mapping = []
    all_text_line_results = []
    comprehend_query_number = 0

    # Collect all text from the page
    for i, text_line in enumerate(line_level_text_results_list):
        #print("line_level_text_results_list:", line_level_text_results_list)
        if chosen_redact_entities:
            if page_text:
                #page_text += " | "
                page_text += " "
            
            start_pos = len(page_text)
            page_text += text_line.text
            page_text_mapping.append((start_pos, i, text_line, line_characters[i]))

    # Process based on identification method
    if pii_identification_method == "Local":
        if not nlp_analyser:
            raise ValueError("nlp_analyser is required for Local identification method")
        
        #print("page text:", page_text)

        page_analyser_result = nlp_analyser.analyze(
            text=page_text,
            language=language,
            entities=chosen_redact_entities,
            score_threshold=score_threshold,
            return_decision_process=True,
            allow_list=allow_list
        )

        
        all_text_line_results = map_back_entity_results(
            page_analyser_result, 
            page_text_mapping, 
            all_text_line_results
        )


    elif pii_identification_method == "AWS Comprehend":

        # Process custom entities if any
        if custom_entities:
            custom_redact_entities = [
                entity for entity in chosen_redact_comprehend_entities 
                if entity in custom_entities
            ]
            if custom_redact_entities:
                page_analyser_result = nlp_analyser.analyze(
                    text=page_text,
                    language=language,
                    entities=custom_redact_entities,
                    score_threshold=score_threshold,
                    return_decision_process=True,
                    allow_list=allow_list
                )

                all_text_line_results = map_back_entity_results(
                    page_analyser_result, 
                    page_text_mapping, 
                    all_text_line_results
                )

        current_batch = ""
        current_batch_mapping = []
        batch_char_count = 0
        batch_word_count = 0

        for i, text_line in enumerate(line_level_text_results_list):
            words = text_line.text.split()
            word_start_positions = []
            
            # Calculate word start positions within the line
            current_pos = 0
            for word in words:
                word_start_positions.append(current_pos)
                current_pos += len(word) + 1  # +1 for space
            
            for word_idx, word in enumerate(words):
                new_batch_char_count = len(current_batch) + len(word) + 1
                
                if batch_word_count >= 50 or new_batch_char_count >= 200:
                    # Process current batch
                    all_text_line_results = do_aws_comprehend_call(
                        current_batch,
                        current_batch_mapping,
                        comprehend_client,
                        language,
                        allow_list,
                        chosen_redact_comprehend_entities,
                        all_text_line_results
                    )
                    comprehend_query_number += 1
                    
                    # Start new batch
                    current_batch = word
                    batch_word_count = 1
                    batch_char_count = len(word)
                    current_batch_mapping = [(0, i, text_line, line_characters[i], word_start_positions[word_idx])]
                else:
                    if current_batch:
                        current_batch += " "
                        batch_char_count += 1
                    current_batch += word
                    batch_char_count += len(word)
                    batch_word_count += 1
                    
                    if not current_batch_mapping or current_batch_mapping[-1][1] != i:
                        current_batch_mapping.append((
                            batch_char_count - len(word),
                            i,
                            text_line,
                            line_characters[i],
                            word_start_positions[word_idx]  # Add the word's start position within its line
                        ))

        # Process final batch
        if current_batch:
            all_text_line_results = do_aws_comprehend_call(
                current_batch,
                current_batch_mapping,
                comprehend_client,
                language,
                allow_list,
                chosen_redact_comprehend_entities,
                all_text_line_results
            )
            comprehend_query_number += 1

    # Process results for each line
    for i, text_line in enumerate(line_level_text_results_list):
        line_results = next((results for idx, results in all_text_line_results if idx == i), [])
        
        if line_results:
            text_line_bounding_boxes = merge_text_bounding_boxes(
                line_results,
                line_characters[i]
            )
            
            page_analyser_results.extend(line_results)
            page_analysed_bounding_boxes.extend(text_line_bounding_boxes)

    return page_analysed_bounding_boxes

def merge_text_bounding_boxes(analyser_results, characters: List[LTChar], combine_pixel_dist: int = 20, vertical_padding: int = 0):
    '''
    Merge identified bounding boxes containing PII that are very close to one another
    '''
    analysed_bounding_boxes = []
    original_bounding_boxes = []  # List to hold original bounding boxes

    if len(analyser_results) > 0 and len(characters) > 0:
        # Extract bounding box coordinates for sorting
        bounding_boxes = []
        for result in analyser_results:
            #print("Result:", result)
            char_boxes = [char.bbox for char in characters[result.start:result.end] if isinstance(char, LTChar)]
            char_text = [char._text for char in characters[result.start:result.end] if isinstance(char, LTChar)]
            if char_boxes:
                # Calculate the bounding box that encompasses all characters
                left = min(box[0] for box in char_boxes)
                bottom = min(box[1] for box in char_boxes)
                right = max(box[2] for box in char_boxes)
                top = max(box[3] for box in char_boxes) + vertical_padding
                bbox = [left, bottom, right, top]
                bounding_boxes.append((bottom, left, result, bbox, char_text))  # (y, x, result, bbox, text)

                # Store original bounding boxes
                original_bounding_boxes.append({"text": "".join(char_text), "boundingBox": bbox, "result": copy.deepcopy(result)})
                #print("Original bounding boxes:", original_bounding_boxes)

        # Sort the results by y-coordinate and then by x-coordinate
        bounding_boxes.sort()

        merged_bounding_boxes = []
        current_box = None
        current_y = None
        current_result = None
        current_text = []

        for y, x, result, next_box, text in bounding_boxes:
            if current_y is None or current_box is None:
                # Initialize the first bounding box
                current_box = next_box
                current_y = next_box[1]
                current_result = result
                current_text = list(text)
            else:
                vertical_diff_bboxes = abs(next_box[1] - current_y)
                horizontal_diff_bboxes = abs(next_box[0] - current_box[2])

                if vertical_diff_bboxes <= 5 and horizontal_diff_bboxes <= combine_pixel_dist:
                    # Merge bounding boxes
                    #print("Merging boxes")
                    merged_box = current_box.copy()
                    merged_result = current_result
                    merged_text = current_text.copy()

                    merged_box[2] = next_box[2]  # Extend horizontally
                    merged_box[3] = max(current_box[3], next_box[3])  # Adjust the top
                    merged_result.end = max(current_result.end, result.end)  # Extend text range
                    try:
                        if current_result.entity_type != result.entity_type:
                            merged_result.entity_type = current_result.entity_type + " - " + result.entity_type
                        else:
                            merged_result.entity_type = current_result.entity_type
                    except Exception as e:
                        print("Unable to combine result entity types:", e)
                    if current_text:
                        merged_text.append(" ")  # Add space between texts
                    merged_text.extend(text)

                    merged_bounding_boxes.append({
                        "text": "".join(merged_text),
                        "boundingBox": merged_box,
                        "result": merged_result
                    })

                else:
                    # Start a new bounding box
                    current_box = next_box
                    current_y = next_box[1]
                    current_result = result
                    current_text = list(text)

        # Combine original and merged bounding boxes
        analysed_bounding_boxes.extend(original_bounding_boxes)
        analysed_bounding_boxes.extend(merged_bounding_boxes)

        #print("Analysed bounding boxes:", analysed_bounding_boxes)

    return analysed_bounding_boxes

# Function to combine OCR results into line-level results
def combine_ocr_results(ocr_results, x_threshold=50, y_threshold=12):
    # Group OCR results into lines based on y_threshold
    lines = []
    current_line = []
    for result in sorted(ocr_results, key=lambda x: x.top):
        if not current_line or abs(result.top - current_line[0].top) <= y_threshold:
            current_line.append(result)
        else:
            lines.append(current_line)
            current_line = [result]
    if current_line:
        lines.append(current_line)

    # Sort each line by left position
    for line in lines:
        line.sort(key=lambda x: x.left)

    # Flatten the sorted lines back into a single list
    sorted_results = [result for line in lines for result in line]

    combined_results = []
    new_format_results = {}
    current_line = []
    current_bbox = None
    line_counter = 1

    def create_ocr_result_with_children(combined_results, i, current_bbox, current_line):
        combined_results["text_line_" + str(i)] = {
        "line": i,
        'text': current_bbox.text,
        'bounding_box': (current_bbox.left, current_bbox.top, 
                            current_bbox.left + current_bbox.width, 
                            current_bbox.top + current_bbox.height),
        'words': [{'text': word.text, 
                    'bounding_box': (word.left, word.top, 
                                    word.left + word.width, 
                                    word.top + word.height)} 
                    for word in current_line]
    }
        return combined_results["text_line_" + str(i)]  

    for result in sorted_results:
        if not current_line:
            # Start a new line
            current_line.append(result)
            current_bbox = result
        else:
            # Check if the result is on the same line (y-axis) and close horizontally (x-axis)
            last_result = current_line[-1]

            if abs(result.top - last_result.top) <= y_threshold and \
               (result.left - (last_result.left + last_result.width)) <= x_threshold:
                # Update the bounding box to include the new word
                new_right = max(current_bbox.left + current_bbox.width, result.left + result.width)
                current_bbox = OCRResult(
                    text=f"{current_bbox.text} {result.text}",
                    left=current_bbox.left,
                    top=current_bbox.top,
                    width=new_right - current_bbox.left,
                    height=max(current_bbox.height, result.height)
                )
                current_line.append(result)
            else:
                

                # Commit the current line and start a new one
                combined_results.append(current_bbox)

                new_format_results["text_line_" + str(line_counter)] = create_ocr_result_with_children(new_format_results, line_counter, current_bbox, current_line)

                line_counter += 1
                current_line = [result]
                current_bbox = result

    # Append the last line
    if current_bbox:
        combined_results.append(current_bbox)

        new_format_results["text_line_" + str(line_counter)] = create_ocr_result_with_children(new_format_results, line_counter, current_bbox, current_line)


    return combined_results, new_format_results

class CustomImageAnalyzerEngine:
    def __init__(
        self,
        analyzer_engine: Optional[AnalyzerEngine] = None,
        tesseract_config: Optional[str] = None,
        image_preprocessor: Optional[ImagePreprocessor] = None
    ):
        if not analyzer_engine:
            analyzer_engine = AnalyzerEngine()
        self.analyzer_engine = analyzer_engine
        self.tesseract_config = tesseract_config or '--oem 3 --psm 11'

        if not image_preprocessor:
            image_preprocessor = ContrastSegmentedImageEnhancer()
            #print(image_preprocessor)
        self.image_preprocessor = image_preprocessor

    def perform_ocr(self, image: Union[str, Image.Image, np.ndarray]) -> List[OCRResult]:
        # Ensure image is a PIL Image
        if isinstance(image, str):
            image = Image.open(image)
        elif isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        image_processed, preprocessing_metadata = self.image_preprocessor.preprocess_image(image)

        ocr_data = pytesseract.image_to_data(image_processed, output_type=pytesseract.Output.DICT, config=self.tesseract_config)

        if preprocessing_metadata and ("scale_factor" in preprocessing_metadata):
            ocr_result = self._scale_bbox_results(
                ocr_data, preprocessing_metadata["scale_factor"]
            )

        ocr_result = self.remove_space_boxes(ocr_result)
        
        # Filter out empty strings and low confidence results
        valid_indices = [i for i, text in enumerate(ocr_result['text']) if text.strip() and int(ocr_result['conf'][i]) > 0]
        
        return [
            OCRResult(
                text=clean_unicode_text(ocr_result['text'][i]),
                left=ocr_result['left'][i],
                top=ocr_result['top'][i],
                width=ocr_result['width'][i],
                height=ocr_result['height'][i]
            )
            for i in valid_indices
        ]

    def analyze_text(
        self, 
        line_level_ocr_results: List[OCRResult], 
        ocr_results_with_children: Dict[str, Dict],
        chosen_redact_comprehend_entities: List[str],
        pii_identification_method: str = "Local",
        comprehend_client = "",      
        **text_analyzer_kwargs
    ) -> List[CustomImageRecognizerResult]:

        page_text = ""
        page_text_mapping = []
        all_text_line_results = []
        comprehend_query_number = 0

        # Collect all text and create mapping
        for i, line_level_ocr_result in enumerate(line_level_ocr_results):
            if page_text:
                page_text += " "
            start_pos = len(page_text)
            page_text += line_level_ocr_result.text
            # Note: We're not passing line_characters here since it's not needed for this use case
            page_text_mapping.append((start_pos, i, line_level_ocr_result, None))

        # Process using either Local or AWS Comprehend
        if pii_identification_method == "Local":
            analyzer_result = self.analyzer_engine.analyze(
                text=page_text,
                **text_analyzer_kwargs
            )
            all_text_line_results = map_back_entity_results(
                analyzer_result,
                page_text_mapping,
                all_text_line_results
            )

        elif pii_identification_method == "AWS Comprehend":
            # Handle custom entities first
            if custom_entities:
                custom_redact_entities = [
                    entity for entity in chosen_redact_comprehend_entities 
                    if entity in custom_entities
                ]
                if custom_redact_entities:
                    text_analyzer_kwargs["entities"] = custom_redact_entities
                    page_analyser_result = self.analyzer_engine.analyze(
                        text=page_text,
                        **text_analyzer_kwargs
                    )
                    all_text_line_results = map_back_entity_results(
                        page_analyser_result,
                        page_text_mapping,
                        all_text_line_results
                    )

            # Process text in batches for AWS Comprehend
            current_batch = ""
            current_batch_mapping = []
            batch_char_count = 0
            batch_word_count = 0

            for i, text_line in enumerate(line_level_ocr_results):
                words = text_line.text.split()
                word_start_positions = []
                current_pos = 0
                
                for word in words:
                    word_start_positions.append(current_pos)
                    current_pos += len(word) + 1

                for word_idx, word in enumerate(words):
                    new_batch_char_count = len(current_batch) + len(word) + 1
                    
                    if batch_word_count >= 50 or new_batch_char_count >= 200:
                        # Process current batch
                        all_text_line_results = do_aws_comprehend_call(
                            current_batch,
                            current_batch_mapping,
                            comprehend_client,
                            text_analyzer_kwargs["language"],
                            text_analyzer_kwargs.get('allow_list', []),
                            chosen_redact_comprehend_entities,
                            all_text_line_results
                        )
                        comprehend_query_number += 1
                        
                        # Reset batch
                        current_batch = word
                        batch_word_count = 1
                        batch_char_count = len(word)
                        current_batch_mapping = [(0, i, text_line, None, word_start_positions[word_idx])]
                    else:
                        if current_batch:
                            current_batch += " "
                            batch_char_count += 1
                        current_batch += word
                        batch_char_count += len(word)
                        batch_word_count += 1
                        
                        if not current_batch_mapping or current_batch_mapping[-1][1] != i:
                            current_batch_mapping.append((
                                batch_char_count - len(word),
                                i,
                                text_line,
                                None,
                                word_start_positions[word_idx]
                            ))

            # Process final batch if any
            if current_batch:
                all_text_line_results = do_aws_comprehend_call(
                    current_batch,
                    current_batch_mapping,
                    comprehend_client,
                    text_analyzer_kwargs["language"],
                    text_analyzer_kwargs.get('allow_list', []),
                    chosen_redact_comprehend_entities,
                    all_text_line_results
                )
                comprehend_query_number += 1

        

        # Process results and create bounding boxes
        combined_results = []
        for i, text_line in enumerate(line_level_ocr_results):
            line_results = next((results for idx, results in all_text_line_results if idx == i), [])
            if line_results and i < len(ocr_results_with_children):
                child_level_key = list(ocr_results_with_children.keys())[i]
                ocr_results_with_children_line_level = ocr_results_with_children[child_level_key]
                
                for result in line_results:
                    bbox_results = self.map_analyzer_results_to_bounding_boxes(
                        [result],
                        [OCRResult(
                            text=text_line.text[result.start:result.end],
                            left=text_line.left,
                            top=text_line.top,
                            width=text_line.width,
                            height=text_line.height
                        )],
                        text_line.text,
                        text_analyzer_kwargs.get('allow_list', []),
                        ocr_results_with_children_line_level
                    )
                    combined_results.extend(bbox_results)

        return combined_results, comprehend_query_number

    @staticmethod
    def map_analyzer_results_to_bounding_boxes(
    text_analyzer_results: List[RecognizerResult],
    redaction_relevant_ocr_results: List[OCRResult],
    full_text: str,
    allow_list: List[str],
    ocr_results_with_children_child_info: Dict[str, Dict]
) -> List[CustomImageRecognizerResult]:
        redaction_bboxes = []

        for redaction_relevant_ocr_result in redaction_relevant_ocr_results:
            #print("ocr_results_with_children_child_info:", ocr_results_with_children_child_info)

            line_text = ocr_results_with_children_child_info['text']
            line_length = len(line_text)
            redaction_text = redaction_relevant_ocr_result.text

            #print(f"Processing line: '{line_text}'")
            
            for redaction_result in text_analyzer_results:
                #print(f"Checking redaction result: {redaction_result}")
                #print("redaction_text:", redaction_text)
                #print("line_length:", line_length)
                #print("line_text:", line_text)
                
                # Check if the redaction text is not in the allow list
                
                if redaction_text not in allow_list:
                    
                    # Adjust start and end to be within line bounds
                    start_in_line = max(0, redaction_result.start)
                    end_in_line = min(line_length, redaction_result.end)
                    
                    # Get the matched text from this line
                    matched_text = line_text[start_in_line:end_in_line]
                    matched_words = matched_text.split()
                    
                    # print(f"Found match: '{matched_text}' in line")

                    # for word_info in ocr_results_with_children_child_info.get('words', []):
                    #     # Check if this word is part of our match
                    #     if any(word.lower() in word_info['text'].lower() for word in matched_words):
                    #         matching_word_boxes.append(word_info['bounding_box'])
                    #         print(f"Matched word: {word_info['text']}")
                    
                    # Find the corresponding words in the OCR results
                    matching_word_boxes = []
                    
                    #print("ocr_results_with_children_child_info:", ocr_results_with_children_child_info)

                    current_position = 0

                    for word_info in ocr_results_with_children_child_info.get('words', []):
                        word_text = word_info['text']
                        word_length = len(word_text)

                        # Assign start and end character positions
                        #word_info['start_position'] = current_position
                        #word_info['end_position'] = current_position + word_length

                        word_start = current_position
                        word_end = current_position + word_length

                        # Update current position for the next word
                        current_position += word_length + 1  # +1 for the space after the word

                        #print("word_info['bounding_box']:", word_info['bounding_box'])
                        #print("word_start:", word_start)
                        #print("start_in_line:", start_in_line)

                        #print("word_end:", word_end)
                        #print("end_in_line:", end_in_line)
                        
                        # Check if the word's bounding box is within the start and end bounds
                        if word_start >= start_in_line and word_end <= (end_in_line + 1):
                            matching_word_boxes.append(word_info['bounding_box'])
                            #print(f"Matched word: {word_info['text']}")
                    
                    if matching_word_boxes:
                        # Calculate the combined bounding box for all matching words
                        left = min(box[0] for box in matching_word_boxes)
                        top = min(box[1] for box in matching_word_boxes)
                        right = max(box[2] for box in matching_word_boxes)
                        bottom = max(box[3] for box in matching_word_boxes)
                        
                        redaction_bboxes.append(
                            CustomImageRecognizerResult(
                                entity_type=redaction_result.entity_type,
                                start=start_in_line,
                                end=end_in_line,
                                score=redaction_result.score,
                                left=left,
                                top=top,
                                width=right - left,
                                height=bottom - top,
                                text=matched_text
                            )
                        )
                        #print(f"Added bounding box for: '{matched_text}'")

        return redaction_bboxes
    
    @staticmethod
    def remove_space_boxes(ocr_result: dict) -> dict:
        """Remove OCR bboxes that are for spaces.
        :param ocr_result: OCR results (raw or thresholded).
        :return: OCR results with empty words removed.
        """
        # Get indices of items with no text
        idx = list()
        for i, text in enumerate(ocr_result["text"]):
            is_not_space = text.isspace() is False
            if text != "" and is_not_space:
                idx.append(i)

        # Only retain items with text
        filtered_ocr_result = {}
        for key in list(ocr_result.keys()):
            filtered_ocr_result[key] = [ocr_result[key][i] for i in idx]

        return filtered_ocr_result
    
    @staticmethod
    def _scale_bbox_results(
        ocr_result: Dict[str, List[Union[int, str]]], scale_factor: float
    ) -> Dict[str, float]:
        """Scale down the bounding box results based on a scale percentage.
        :param ocr_result: OCR results (raw).
        :param scale_percent: Scale percentage for resizing the bounding box.
        :return: OCR results (scaled).
        """
        scaled_results = deepcopy(ocr_result)
        coordinate_keys = ["left", "top"]
        dimension_keys = ["width", "height"]

        for coord_key in coordinate_keys:
            scaled_results[coord_key] = [
                int(np.ceil((x) / (scale_factor))) for x in scaled_results[coord_key]
            ]

        for dim_key in dimension_keys:
            scaled_results[dim_key] = [
                max(1, int(np.ceil(x / (scale_factor))))
                for x in scaled_results[dim_key]
            ]
        return scaled_results

    @staticmethod
    def estimate_x_offset(full_text: str, start: int) -> int:
        # Estimate the x-offset based on character position
        # This is a simple estimation and might need refinement for variable-width fonts
        return int(start / len(full_text) * len(full_text))
    
    def estimate_width(self, ocr_result: OCRResult, start: int, end: int) -> int:
        # Extract the relevant text portion
        relevant_text = ocr_result.text[start:end]
        
        # If the relevant text is the same as the full text, return the full width
        if relevant_text == ocr_result.text:
            return ocr_result.width
        
        # Estimate width based on the proportion of the relevant text length to the total text length
        total_text_length = len(ocr_result.text)
        relevant_text_length = len(relevant_text)
        
        if total_text_length == 0:
            return 0  # Avoid division by zero
        
        # Proportion of the relevant text to the total text
        proportion = relevant_text_length / total_text_length
        
        # Estimate the width based on the proportion
        estimated_width = int(proportion * ocr_result.width)
        
        return estimated_width