sashtech's picture
Update app.py
42515fd verified
raw
history blame
9.94 kB
import os
import gradio as gr
from transformers import pipeline
import spacy
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import re
import inflect
# Initialize components
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
print("Downloading spaCy model...")
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Initialize the spell checker
spell = SpellChecker()
# Initialize the inflect engine for pluralization
inflect_engine = inflect.engine()
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet', quiet=True)
nltk.download('omw-1.4', quiet=True)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas if lemma.name() != word]
return []
def remove_redundant_words(text):
doc = nlp(text)
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
return ' '.join(filtered_text)
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start or token.pos_ == "PROPN":
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
corrected_text.append(lemma)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def correct_singular_plural_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN" and any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
corrected_text.append(inflect_engine.plural(token.lemma_))
elif token.tag_ == "NNS" and any(child.text.lower() in ['a', 'one'] for child in token.head.children):
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
for i, token in enumerate(doc):
if token.text.lower() in ['a', 'an']:
next_token = doc[i + 1] if i + 1 < len(doc) else None
if next_token and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
else:
corrected_text.append("a")
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def correct_double_negatives(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.dep_ == "neg" and any(child.dep_ == "neg" for child in token.head.children):
continue
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def ensure_subject_verb_agreement(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
if token.tag_ == "NN" and token.head.tag_ != "VBZ":
corrected_text.append(token.head.lemma_ + "s")
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
corrected_text.append(token.head.lemma_)
else:
corrected_text.append(token.head.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def enhanced_spell_check(text):
words = text.split()
corrected_words = []
for word in words:
if '_' in word:
sub_words = word.split('_')
corrected_sub_words = [spell.correction(w) or w for w in sub_words]
corrected_words.append('_'.join(corrected_sub_words))
else:
corrected_word = spell.correction(word) or word
corrected_words.append(corrected_word)
return ' '.join(corrected_words)
def correct_semantic_errors(text):
semantic_corrections = {
"animate_being": "animal",
"little": "smallest",
"big": "largest",
"mammalian": "mammals",
"universe": "world",
"manner": "ways",
"continue": "preserve",
"dirt": "soil",
"wellness": "health",
"modulate": "regulate",
"clime": "climate",
"function": "role",
"keeping": "maintaining",
"lend": "contribute",
"better": "improve",
"cardinal": "key",
"expeditiously": "efficiently",
"marauder": "predator",
"quarry": "prey",
"forestalling": "preventing",
"bend": "turn",
"works": "plant",
"croping": "grazing",
"flora": "vegetation",
"dynamical": "dynamic",
"alteration": "change",
"add-on": "addition",
"indispensable": "essential",
"nutrient": "food",
"harvest": "crops",
"pollenateing": "pollinating",
"divers": "diverse",
"beginning": "source",
"homo": "humans",
"fall_in": "collapse",
"takeing": "leading",
"coinage": "species",
"trust": "rely",
"angleworm": "earthworm",
"interrupt": "break",
"affair": "matter",
"air_out": "aerate",
"alimentary": "nutrient",
"distributeed": "spread",
"country": "areas",
"reconstruct": "restore",
"debauched": "degraded",
"giant": "whales",
"organic_structure": "bodies",
"decease": "die",
"carcase": "carcasses",
"pin_downing": "trapping",
"cut_downs": "reduces",
"ambiance": "atmosphere",
"extenuateing": "mitigating",
"decision": "conclusion",
"doing": "making",
"prolongs": "sustains",
"home_ground": "habitats",
"continueing": "preserving",
"populateing": "living",
"beingness": "beings"
}
words = text.split()
corrected_words = [semantic_corrections.get(word.lower(), word) for word in words]
return ' '.join(corrected_words)
def enhance_punctuation(text):
text = re.sub(r'\s+([?.!,";:])', r'\1', text)
text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text)
text = re.sub(r'\s*"\s*', '" ', text).strip()
text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text)
text = re.sub(r'([a-z])\s+([A-Z])', r'\1. \2', text)
return text
def correct_apostrophes(text):
text = re.sub(r"\b(\w+)s\b(?<!\'s)", r"\1's", text)
text = re.sub(r"\b(\w+)s'\b", r"\1s'", text)
return text
def handle_possessives(text):
text = re.sub(r"\b(\w+)'s\b", r"\1's", text)
return text
def rephrase_with_synonyms(text):
doc = nlp(text)
rephrased_text = []
for token in doc:
if token.text.lower() == "earth":
rephrased_text.append("Earth")
continue
pos_tag = None
if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"]:
pos_tag = getattr(wordnet, token.pos_)
if pos_tag:
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
if synonyms:
synonym = synonyms[0]
if token.pos_ == "VERB":
if token.tag_ == "VBG":
synonym = synonym + 'ing'
elif token.tag_ in ["VBD", "VBN"]:
synonym = synonym + 'ed'
elif token.tag_ == "VBZ":
synonym = synonym + 's'
rephrased_text.append(synonym)
else:
rephrased_text.append(token.text)
else:
rephrased_text.append(token.text)
return ' '.join(rephrased_text)
def paraphrase_and_correct(text):
text = enhanced_spell_check(text)
text = correct_semantic_errors(text)
text = remove_redundant_words(text)
text = capitalize_sentences_and_nouns(text)
text = correct_tense_errors(text)
text = correct_singular_plural_errors(text)
text = correct_article_errors(text)
text = enhance_punctuation(text)
text = correct_apostrophes(text)
text = handle_possessives(text)
text = rephrase_with_synonyms(text)
text = correct_double_negatives(text)
text = ensure_subject_verb_agreement(text)
text = ' '.join(word.capitalize() if word.lower() in ['i', 'earth'] else word for word in text.split())
return text
def detect_ai(text):
label, score = predict_en(text)
return label, score
def gradio_interface(text):
label, score = detect_ai(text)
corrected_text = paraphrase_and_correct(text)
return {label: score}, corrected_text
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
outputs=[
gr.Label(num_top_classes=1),
gr.Textbox(label="Corrected Text")
],
title="AI Detection and Grammar Correction",
description="Detect AI-generated content and correct grammar issues."
)
if __name__ == "__main__":
iface.launch()