Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import nltk | |
from nltk.corpus import wordnet | |
from spellchecker import SpellChecker | |
import re | |
import inflect | |
# Initialize components | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
print("Downloading spaCy model...") | |
spacy.cli.download("en_core_web_sm") | |
nlp = spacy.load("en_core_web_sm") | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# Initialize the spell checker | |
spell = SpellChecker() | |
# Initialize the inflect engine for pluralization | |
inflect_engine = inflect.engine() | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet', quiet=True) | |
nltk.download('omw-1.4', quiet=True) | |
def predict_en(text): | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
def get_synonyms_nltk(word, pos): | |
synsets = wordnet.synsets(word, pos=pos) | |
if synsets: | |
lemmas = synsets[0].lemmas() | |
return [lemma.name() for lemma in lemmas if lemma.name() != word] | |
return [] | |
def remove_redundant_words(text): | |
doc = nlp(text) | |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} | |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] | |
return ' '.join(filtered_text) | |
def capitalize_sentences_and_nouns(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start or token.pos_ == "PROPN": | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
def correct_tense_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: | |
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text | |
corrected_text.append(lemma) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
def correct_singular_plural_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "NOUN": | |
if token.tag_ == "NN" and any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children): | |
corrected_text.append(inflect_engine.plural(token.lemma_)) | |
elif token.tag_ == "NNS" and any(child.text.lower() in ['a', 'one'] for child in token.head.children): | |
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text) | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
def correct_article_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for i, token in enumerate(doc): | |
if token.text.lower() in ['a', 'an']: | |
next_token = doc[i + 1] if i + 1 < len(doc) else None | |
if next_token and next_token.text[0].lower() in "aeiou": | |
corrected_text.append("an") | |
else: | |
corrected_text.append("a") | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
def correct_double_negatives(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.dep_ == "neg" and any(child.dep_ == "neg" for child in token.head.children): | |
continue | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
def ensure_subject_verb_agreement(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB": | |
if token.tag_ == "NN" and token.head.tag_ != "VBZ": | |
corrected_text.append(token.head.lemma_ + "s") | |
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": | |
corrected_text.append(token.head.lemma_) | |
else: | |
corrected_text.append(token.head.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
def enhanced_spell_check(text): | |
words = text.split() | |
corrected_words = [] | |
for word in words: | |
if '_' in word: | |
sub_words = word.split('_') | |
corrected_sub_words = [spell.correction(w) or w for w in sub_words] | |
corrected_words.append('_'.join(corrected_sub_words)) | |
else: | |
corrected_word = spell.correction(word) or word | |
corrected_words.append(corrected_word) | |
return ' '.join(corrected_words) | |
def correct_semantic_errors(text): | |
semantic_corrections = { | |
"animate_being": "animal", | |
"little": "smallest", | |
"big": "largest", | |
"mammalian": "mammals", | |
"universe": "world", | |
"manner": "ways", | |
"continue": "preserve", | |
"dirt": "soil", | |
"wellness": "health", | |
"modulate": "regulate", | |
"clime": "climate", | |
"function": "role", | |
"keeping": "maintaining", | |
"lend": "contribute", | |
"better": "improve", | |
"cardinal": "key", | |
"expeditiously": "efficiently", | |
"marauder": "predator", | |
"quarry": "prey", | |
"forestalling": "preventing", | |
"bend": "turn", | |
"works": "plant", | |
"croping": "grazing", | |
"flora": "vegetation", | |
"dynamical": "dynamic", | |
"alteration": "change", | |
"add-on": "addition", | |
"indispensable": "essential", | |
"nutrient": "food", | |
"harvest": "crops", | |
"pollenateing": "pollinating", | |
"divers": "diverse", | |
"beginning": "source", | |
"homo": "humans", | |
"fall_in": "collapse", | |
"takeing": "leading", | |
"coinage": "species", | |
"trust": "rely", | |
"angleworm": "earthworm", | |
"interrupt": "break", | |
"affair": "matter", | |
"air_out": "aerate", | |
"alimentary": "nutrient", | |
"distributeed": "spread", | |
"country": "areas", | |
"reconstruct": "restore", | |
"debauched": "degraded", | |
"giant": "whales", | |
"organic_structure": "bodies", | |
"decease": "die", | |
"carcase": "carcasses", | |
"pin_downing": "trapping", | |
"cut_downs": "reduces", | |
"ambiance": "atmosphere", | |
"extenuateing": "mitigating", | |
"decision": "conclusion", | |
"doing": "making", | |
"prolongs": "sustains", | |
"home_ground": "habitats", | |
"continueing": "preserving", | |
"populateing": "living", | |
"beingness": "beings" | |
} | |
words = text.split() | |
corrected_words = [semantic_corrections.get(word.lower(), word) for word in words] | |
return ' '.join(corrected_words) | |
def enhance_punctuation(text): | |
text = re.sub(r'\s+([?.!,";:])', r'\1', text) | |
text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text) | |
text = re.sub(r'\s*"\s*', '" ', text).strip() | |
text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text) | |
text = re.sub(r'([a-z])\s+([A-Z])', r'\1. \2', text) | |
return text | |
def correct_apostrophes(text): | |
text = re.sub(r"\b(\w+)s\b(?<!\'s)", r"\1's", text) | |
text = re.sub(r"\b(\w+)s'\b", r"\1s'", text) | |
return text | |
def handle_possessives(text): | |
text = re.sub(r"\b(\w+)'s\b", r"\1's", text) | |
return text | |
def rephrase_with_synonyms(text): | |
doc = nlp(text) | |
rephrased_text = [] | |
for token in doc: | |
if token.text.lower() == "earth": | |
rephrased_text.append("Earth") | |
continue | |
pos_tag = None | |
if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"]: | |
pos_tag = getattr(wordnet, token.pos_) | |
if pos_tag: | |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag) | |
if synonyms: | |
synonym = synonyms[0] | |
if token.pos_ == "VERB": | |
if token.tag_ == "VBG": | |
synonym = synonym + 'ing' | |
elif token.tag_ in ["VBD", "VBN"]: | |
synonym = synonym + 'ed' | |
elif token.tag_ == "VBZ": | |
synonym = synonym + 's' | |
rephrased_text.append(synonym) | |
else: | |
rephrased_text.append(token.text) | |
else: | |
rephrased_text.append(token.text) | |
return ' '.join(rephrased_text) | |
def paraphrase_and_correct(text): | |
text = enhanced_spell_check(text) | |
text = correct_semantic_errors(text) | |
text = remove_redundant_words(text) | |
text = capitalize_sentences_and_nouns(text) | |
text = correct_tense_errors(text) | |
text = correct_singular_plural_errors(text) | |
text = correct_article_errors(text) | |
text = enhance_punctuation(text) | |
text = correct_apostrophes(text) | |
text = handle_possessives(text) | |
text = rephrase_with_synonyms(text) | |
text = correct_double_negatives(text) | |
text = ensure_subject_verb_agreement(text) | |
text = ' '.join(word.capitalize() if word.lower() in ['i', 'earth'] else word for word in text.split()) | |
return text | |
def detect_ai(text): | |
label, score = predict_en(text) | |
return label, score | |
def gradio_interface(text): | |
label, score = detect_ai(text) | |
corrected_text = paraphrase_and_correct(text) | |
return {label: score}, corrected_text | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."), | |
outputs=[ | |
gr.Label(num_top_classes=1), | |
gr.Textbox(label="Corrected Text") | |
], | |
title="AI Detection and Grammar Correction", | |
description="Detect AI-generated content and correct grammar issues." | |
) | |
if __name__ == "__main__": | |
iface.launch() |