Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -26,15 +26,13 @@ spell = SpellChecker()
|
|
26 |
inflect_engine = inflect.engine()
|
27 |
|
28 |
# Ensure necessary NLTK data is downloaded
|
29 |
-
nltk.download('wordnet')
|
30 |
-
nltk.download('omw-1.4')
|
31 |
|
32 |
-
# Function to predict the label and score for English text (AI Detection)
|
33 |
def predict_en(text):
|
34 |
res = pipeline_en(text)[0]
|
35 |
return res['label'], res['score']
|
36 |
|
37 |
-
# Function to get synonyms using NLTK WordNet
|
38 |
def get_synonyms_nltk(word, pos):
|
39 |
synsets = wordnet.synsets(word, pos=pos)
|
40 |
if synsets:
|
@@ -42,14 +40,12 @@ def get_synonyms_nltk(word, pos):
|
|
42 |
return [lemma.name() for lemma in lemmas if lemma.name() != word]
|
43 |
return []
|
44 |
|
45 |
-
# Function to remove redundant and meaningless words
|
46 |
def remove_redundant_words(text):
|
47 |
doc = nlp(text)
|
48 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
49 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
50 |
return ' '.join(filtered_text)
|
51 |
|
52 |
-
# Function to capitalize the first letter of sentences and proper nouns
|
53 |
def capitalize_sentences_and_nouns(text):
|
54 |
doc = nlp(text)
|
55 |
corrected_text = []
|
@@ -57,9 +53,7 @@ def capitalize_sentences_and_nouns(text):
|
|
57 |
for sent in doc.sents:
|
58 |
sentence = []
|
59 |
for token in sent:
|
60 |
-
if token.i == sent.start
|
61 |
-
sentence.append(token.text.capitalize())
|
62 |
-
elif token.pos_ == "PROPN": # Proper noun
|
63 |
sentence.append(token.text.capitalize())
|
64 |
else:
|
65 |
sentence.append(token.text)
|
@@ -67,7 +61,6 @@ def capitalize_sentences_and_nouns(text):
|
|
67 |
|
68 |
return ' '.join(corrected_text)
|
69 |
|
70 |
-
# Function to correct tense errors in a sentence
|
71 |
def correct_tense_errors(text):
|
72 |
doc = nlp(text)
|
73 |
corrected_text = []
|
@@ -79,109 +72,75 @@ def correct_tense_errors(text):
|
|
79 |
corrected_text.append(token.text)
|
80 |
return ' '.join(corrected_text)
|
81 |
|
82 |
-
# Function to correct singular/plural errors
|
83 |
def correct_singular_plural_errors(text):
|
84 |
doc = nlp(text)
|
85 |
corrected_text = []
|
86 |
|
87 |
for token in doc:
|
88 |
if token.pos_ == "NOUN":
|
89 |
-
if token.tag_ == "NN"
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
96 |
-
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
|
97 |
-
else:
|
98 |
-
corrected_text.append(token.text)
|
99 |
else:
|
100 |
corrected_text.append(token.text)
|
101 |
|
102 |
return ' '.join(corrected_text)
|
103 |
|
104 |
-
# Function to check and correct article errors
|
105 |
def correct_article_errors(text):
|
106 |
doc = nlp(text)
|
107 |
corrected_text = []
|
108 |
-
for token in doc:
|
109 |
-
if token.text in ['a', 'an']:
|
110 |
-
next_token =
|
111 |
-
if
|
112 |
corrected_text.append("an")
|
113 |
-
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
114 |
-
corrected_text.append("a")
|
115 |
else:
|
116 |
-
corrected_text.append(
|
117 |
else:
|
118 |
corrected_text.append(token.text)
|
119 |
return ' '.join(corrected_text)
|
120 |
|
121 |
-
# Function to get the correct synonym while maintaining verb form
|
122 |
-
def replace_with_synonym(token):
|
123 |
-
pos = None
|
124 |
-
if token.pos_ == "VERB":
|
125 |
-
pos = wordnet.VERB
|
126 |
-
elif token.pos_ == "NOUN":
|
127 |
-
pos = wordnet.NOUN
|
128 |
-
elif token.pos_ == "ADJ":
|
129 |
-
pos = wordnet.ADJ
|
130 |
-
elif token.pos_ == "ADV":
|
131 |
-
pos = wordnet.ADV
|
132 |
-
|
133 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
134 |
-
|
135 |
-
if synonyms:
|
136 |
-
synonym = synonyms[0]
|
137 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
138 |
-
synonym = synonym + 'ing'
|
139 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
140 |
-
synonym = synonym + 'ed'
|
141 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
142 |
-
synonym = synonym + 's'
|
143 |
-
return synonym
|
144 |
-
return token.text
|
145 |
-
|
146 |
-
# Function to check for and avoid double negatives
|
147 |
def correct_double_negatives(text):
|
148 |
doc = nlp(text)
|
149 |
corrected_text = []
|
150 |
for token in doc:
|
151 |
-
if token.
|
152 |
-
|
153 |
else:
|
154 |
corrected_text.append(token.text)
|
155 |
return ' '.join(corrected_text)
|
156 |
|
157 |
-
# Function to ensure subject-verb agreement
|
158 |
def ensure_subject_verb_agreement(text):
|
159 |
doc = nlp(text)
|
160 |
corrected_text = []
|
161 |
for token in doc:
|
162 |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
163 |
-
if token.tag_ == "NN" and token.head.tag_ != "VBZ":
|
164 |
corrected_text.append(token.head.lemma_ + "s")
|
165 |
-
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
|
166 |
corrected_text.append(token.head.lemma_)
|
167 |
-
|
|
|
|
|
|
|
168 |
return ' '.join(corrected_text)
|
169 |
|
170 |
-
# Enhance the spell checker function
|
171 |
def enhanced_spell_check(text):
|
172 |
words = text.split()
|
173 |
corrected_words = []
|
174 |
for word in words:
|
175 |
-
if '_' in word:
|
176 |
sub_words = word.split('_')
|
177 |
-
corrected_sub_words = [spell.correction(w) for w in sub_words]
|
178 |
corrected_words.append('_'.join(corrected_sub_words))
|
179 |
else:
|
180 |
-
corrected_word = spell.correction(word)
|
181 |
-
corrected_words.append(corrected_word
|
182 |
return ' '.join(corrected_words)
|
183 |
|
184 |
-
# Function to correct common semantic errors
|
185 |
def correct_semantic_errors(text):
|
186 |
semantic_corrections = {
|
187 |
"animate_being": "animal",
|
@@ -199,69 +158,99 @@ def correct_semantic_errors(text):
|
|
199 |
"keeping": "maintaining",
|
200 |
"lend": "contribute",
|
201 |
"better": "improve",
|
202 |
-
"
|
203 |
-
"
|
204 |
-
"
|
205 |
-
"
|
206 |
-
"
|
207 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
}
|
209 |
|
210 |
words = text.split()
|
211 |
corrected_words = [semantic_corrections.get(word.lower(), word) for word in words]
|
212 |
return ' '.join(corrected_words)
|
213 |
|
214 |
-
# Enhance the punctuation correction function
|
215 |
def enhance_punctuation(text):
|
216 |
-
# Remove extra spaces before punctuation
|
217 |
text = re.sub(r'\s+([?.!,";:])', r'\1', text)
|
218 |
-
|
219 |
-
# Add space after punctuation if it's missing
|
220 |
text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text)
|
221 |
-
|
222 |
-
# Correct spacing for quotes
|
223 |
text = re.sub(r'\s*"\s*', '" ', text).strip()
|
224 |
-
|
225 |
-
# Ensure proper capitalization after sentence-ending punctuation
|
226 |
text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text)
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
228 |
return text
|
229 |
|
230 |
-
# Function to handle possessives
|
231 |
def handle_possessives(text):
|
232 |
text = re.sub(r"\b(\w+)'s\b", r"\1's", text)
|
233 |
return text
|
234 |
|
235 |
-
# Function to rephrase text and replace words with their synonyms while maintaining form
|
236 |
def rephrase_with_synonyms(text):
|
237 |
doc = nlp(text)
|
238 |
rephrased_text = []
|
239 |
|
240 |
for token in doc:
|
241 |
-
if token.
|
242 |
rephrased_text.append("Earth")
|
243 |
continue
|
244 |
|
245 |
pos_tag = None
|
246 |
-
if token.pos_
|
247 |
-
pos_tag = wordnet.
|
248 |
-
elif token.pos_ == "VERB":
|
249 |
-
pos_tag = wordnet.VERB
|
250 |
-
elif token.pos_ == "ADJ":
|
251 |
-
pos_tag = wordnet.ADJ
|
252 |
-
elif token.pos_ == "ADV":
|
253 |
-
pos_tag = wordnet.ADV
|
254 |
|
255 |
if pos_tag:
|
256 |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
257 |
if synonyms:
|
258 |
-
synonym = synonyms[0]
|
259 |
if token.pos_ == "VERB":
|
260 |
-
if token.tag_ == "VBG":
|
261 |
synonym = synonym + 'ing'
|
262 |
-
elif token.tag_
|
263 |
synonym = synonym + 'ed'
|
264 |
-
elif token.tag_ == "VBZ":
|
265 |
synonym = synonym + 's'
|
266 |
rephrased_text.append(synonym)
|
267 |
else:
|
@@ -271,40 +260,32 @@ def rephrase_with_synonyms(text):
|
|
271 |
|
272 |
return ' '.join(rephrased_text)
|
273 |
|
274 |
-
# Function to detect AI-generated content
|
275 |
-
def detect_ai(text):
|
276 |
-
label, score = predict_en(text)
|
277 |
-
return label, score
|
278 |
-
|
279 |
-
# Enhance the paraphrase_and_correct function
|
280 |
def paraphrase_and_correct(text):
|
281 |
-
# Apply enhanced spell checking
|
282 |
text = enhanced_spell_check(text)
|
283 |
-
|
284 |
-
# Correct semantic errors
|
285 |
text = correct_semantic_errors(text)
|
286 |
-
|
287 |
-
# Apply existing corrections
|
288 |
text = remove_redundant_words(text)
|
289 |
text = capitalize_sentences_and_nouns(text)
|
290 |
text = correct_tense_errors(text)
|
291 |
text = correct_singular_plural_errors(text)
|
292 |
text = correct_article_errors(text)
|
293 |
text = enhance_punctuation(text)
|
|
|
294 |
text = handle_possessives(text)
|
295 |
text = rephrase_with_synonyms(text)
|
296 |
text = correct_double_negatives(text)
|
297 |
text = ensure_subject_verb_agreement(text)
|
298 |
-
|
299 |
return text
|
300 |
|
301 |
-
|
|
|
|
|
|
|
302 |
def gradio_interface(text):
|
303 |
label, score = detect_ai(text)
|
304 |
corrected_text = paraphrase_and_correct(text)
|
305 |
return {label: score}, corrected_text
|
306 |
|
307 |
-
# Create Gradio interface
|
308 |
iface = gr.Interface(
|
309 |
fn=gradio_interface,
|
310 |
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
|
@@ -316,5 +297,5 @@ iface = gr.Interface(
|
|
316 |
description="Detect AI-generated content and correct grammar issues."
|
317 |
)
|
318 |
|
319 |
-
|
320 |
-
iface.launch()
|
|
|
26 |
inflect_engine = inflect.engine()
|
27 |
|
28 |
# Ensure necessary NLTK data is downloaded
|
29 |
+
nltk.download('wordnet', quiet=True)
|
30 |
+
nltk.download('omw-1.4', quiet=True)
|
31 |
|
|
|
32 |
def predict_en(text):
|
33 |
res = pipeline_en(text)[0]
|
34 |
return res['label'], res['score']
|
35 |
|
|
|
36 |
def get_synonyms_nltk(word, pos):
|
37 |
synsets = wordnet.synsets(word, pos=pos)
|
38 |
if synsets:
|
|
|
40 |
return [lemma.name() for lemma in lemmas if lemma.name() != word]
|
41 |
return []
|
42 |
|
|
|
43 |
def remove_redundant_words(text):
|
44 |
doc = nlp(text)
|
45 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
46 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
47 |
return ' '.join(filtered_text)
|
48 |
|
|
|
49 |
def capitalize_sentences_and_nouns(text):
|
50 |
doc = nlp(text)
|
51 |
corrected_text = []
|
|
|
53 |
for sent in doc.sents:
|
54 |
sentence = []
|
55 |
for token in sent:
|
56 |
+
if token.i == sent.start or token.pos_ == "PROPN":
|
|
|
|
|
57 |
sentence.append(token.text.capitalize())
|
58 |
else:
|
59 |
sentence.append(token.text)
|
|
|
61 |
|
62 |
return ' '.join(corrected_text)
|
63 |
|
|
|
64 |
def correct_tense_errors(text):
|
65 |
doc = nlp(text)
|
66 |
corrected_text = []
|
|
|
72 |
corrected_text.append(token.text)
|
73 |
return ' '.join(corrected_text)
|
74 |
|
|
|
75 |
def correct_singular_plural_errors(text):
|
76 |
doc = nlp(text)
|
77 |
corrected_text = []
|
78 |
|
79 |
for token in doc:
|
80 |
if token.pos_ == "NOUN":
|
81 |
+
if token.tag_ == "NN" and any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
82 |
+
corrected_text.append(inflect_engine.plural(token.lemma_))
|
83 |
+
elif token.tag_ == "NNS" and any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
84 |
+
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
|
85 |
+
else:
|
86 |
+
corrected_text.append(token.text)
|
|
|
|
|
|
|
|
|
87 |
else:
|
88 |
corrected_text.append(token.text)
|
89 |
|
90 |
return ' '.join(corrected_text)
|
91 |
|
|
|
92 |
def correct_article_errors(text):
|
93 |
doc = nlp(text)
|
94 |
corrected_text = []
|
95 |
+
for i, token in enumerate(doc):
|
96 |
+
if token.text.lower() in ['a', 'an']:
|
97 |
+
next_token = doc[i + 1] if i + 1 < len(doc) else None
|
98 |
+
if next_token and next_token.text[0].lower() in "aeiou":
|
99 |
corrected_text.append("an")
|
|
|
|
|
100 |
else:
|
101 |
+
corrected_text.append("a")
|
102 |
else:
|
103 |
corrected_text.append(token.text)
|
104 |
return ' '.join(corrected_text)
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def correct_double_negatives(text):
|
107 |
doc = nlp(text)
|
108 |
corrected_text = []
|
109 |
for token in doc:
|
110 |
+
if token.dep_ == "neg" and any(child.dep_ == "neg" for child in token.head.children):
|
111 |
+
continue
|
112 |
else:
|
113 |
corrected_text.append(token.text)
|
114 |
return ' '.join(corrected_text)
|
115 |
|
|
|
116 |
def ensure_subject_verb_agreement(text):
|
117 |
doc = nlp(text)
|
118 |
corrected_text = []
|
119 |
for token in doc:
|
120 |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
121 |
+
if token.tag_ == "NN" and token.head.tag_ != "VBZ":
|
122 |
corrected_text.append(token.head.lemma_ + "s")
|
123 |
+
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
|
124 |
corrected_text.append(token.head.lemma_)
|
125 |
+
else:
|
126 |
+
corrected_text.append(token.head.text)
|
127 |
+
else:
|
128 |
+
corrected_text.append(token.text)
|
129 |
return ' '.join(corrected_text)
|
130 |
|
|
|
131 |
def enhanced_spell_check(text):
|
132 |
words = text.split()
|
133 |
corrected_words = []
|
134 |
for word in words:
|
135 |
+
if '_' in word:
|
136 |
sub_words = word.split('_')
|
137 |
+
corrected_sub_words = [spell.correction(w) or w for w in sub_words]
|
138 |
corrected_words.append('_'.join(corrected_sub_words))
|
139 |
else:
|
140 |
+
corrected_word = spell.correction(word) or word
|
141 |
+
corrected_words.append(corrected_word)
|
142 |
return ' '.join(corrected_words)
|
143 |
|
|
|
144 |
def correct_semantic_errors(text):
|
145 |
semantic_corrections = {
|
146 |
"animate_being": "animal",
|
|
|
158 |
"keeping": "maintaining",
|
159 |
"lend": "contribute",
|
160 |
"better": "improve",
|
161 |
+
"cardinal": "key",
|
162 |
+
"expeditiously": "efficiently",
|
163 |
+
"marauder": "predator",
|
164 |
+
"quarry": "prey",
|
165 |
+
"forestalling": "preventing",
|
166 |
+
"bend": "turn",
|
167 |
+
"works": "plant",
|
168 |
+
"croping": "grazing",
|
169 |
+
"flora": "vegetation",
|
170 |
+
"dynamical": "dynamic",
|
171 |
+
"alteration": "change",
|
172 |
+
"add-on": "addition",
|
173 |
+
"indispensable": "essential",
|
174 |
+
"nutrient": "food",
|
175 |
+
"harvest": "crops",
|
176 |
+
"pollenateing": "pollinating",
|
177 |
+
"divers": "diverse",
|
178 |
+
"beginning": "source",
|
179 |
+
"homo": "humans",
|
180 |
+
"fall_in": "collapse",
|
181 |
+
"takeing": "leading",
|
182 |
+
"coinage": "species",
|
183 |
+
"trust": "rely",
|
184 |
+
"angleworm": "earthworm",
|
185 |
+
"interrupt": "break",
|
186 |
+
"affair": "matter",
|
187 |
+
"air_out": "aerate",
|
188 |
+
"alimentary": "nutrient",
|
189 |
+
"distributeed": "spread",
|
190 |
+
"country": "areas",
|
191 |
+
"reconstruct": "restore",
|
192 |
+
"debauched": "degraded",
|
193 |
+
"giant": "whales",
|
194 |
+
"organic_structure": "bodies",
|
195 |
+
"decease": "die",
|
196 |
+
"carcase": "carcasses",
|
197 |
+
"pin_downing": "trapping",
|
198 |
+
"cut_downs": "reduces",
|
199 |
+
"ambiance": "atmosphere",
|
200 |
+
"extenuateing": "mitigating",
|
201 |
+
"decision": "conclusion",
|
202 |
+
"doing": "making",
|
203 |
+
"prolongs": "sustains",
|
204 |
+
"home_ground": "habitats",
|
205 |
+
"continueing": "preserving",
|
206 |
+
"populateing": "living",
|
207 |
+
"beingness": "beings"
|
208 |
}
|
209 |
|
210 |
words = text.split()
|
211 |
corrected_words = [semantic_corrections.get(word.lower(), word) for word in words]
|
212 |
return ' '.join(corrected_words)
|
213 |
|
|
|
214 |
def enhance_punctuation(text):
|
|
|
215 |
text = re.sub(r'\s+([?.!,";:])', r'\1', text)
|
|
|
|
|
216 |
text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text)
|
|
|
|
|
217 |
text = re.sub(r'\s*"\s*', '" ', text).strip()
|
|
|
|
|
218 |
text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text)
|
219 |
+
text = re.sub(r'([a-z])\s+([A-Z])', r'\1. \2', text)
|
220 |
+
return text
|
221 |
+
|
222 |
+
def correct_apostrophes(text):
|
223 |
+
text = re.sub(r"\b(\w+)s\b(?<!\'s)", r"\1's", text)
|
224 |
+
text = re.sub(r"\b(\w+)s'\b", r"\1s'", text)
|
225 |
return text
|
226 |
|
|
|
227 |
def handle_possessives(text):
|
228 |
text = re.sub(r"\b(\w+)'s\b", r"\1's", text)
|
229 |
return text
|
230 |
|
|
|
231 |
def rephrase_with_synonyms(text):
|
232 |
doc = nlp(text)
|
233 |
rephrased_text = []
|
234 |
|
235 |
for token in doc:
|
236 |
+
if token.text.lower() == "earth":
|
237 |
rephrased_text.append("Earth")
|
238 |
continue
|
239 |
|
240 |
pos_tag = None
|
241 |
+
if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"]:
|
242 |
+
pos_tag = getattr(wordnet, token.pos_)
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
if pos_tag:
|
245 |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
246 |
if synonyms:
|
247 |
+
synonym = synonyms[0]
|
248 |
if token.pos_ == "VERB":
|
249 |
+
if token.tag_ == "VBG":
|
250 |
synonym = synonym + 'ing'
|
251 |
+
elif token.tag_ in ["VBD", "VBN"]:
|
252 |
synonym = synonym + 'ed'
|
253 |
+
elif token.tag_ == "VBZ":
|
254 |
synonym = synonym + 's'
|
255 |
rephrased_text.append(synonym)
|
256 |
else:
|
|
|
260 |
|
261 |
return ' '.join(rephrased_text)
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
def paraphrase_and_correct(text):
|
|
|
264 |
text = enhanced_spell_check(text)
|
|
|
|
|
265 |
text = correct_semantic_errors(text)
|
|
|
|
|
266 |
text = remove_redundant_words(text)
|
267 |
text = capitalize_sentences_and_nouns(text)
|
268 |
text = correct_tense_errors(text)
|
269 |
text = correct_singular_plural_errors(text)
|
270 |
text = correct_article_errors(text)
|
271 |
text = enhance_punctuation(text)
|
272 |
+
text = correct_apostrophes(text)
|
273 |
text = handle_possessives(text)
|
274 |
text = rephrase_with_synonyms(text)
|
275 |
text = correct_double_negatives(text)
|
276 |
text = ensure_subject_verb_agreement(text)
|
277 |
+
text = ' '.join(word.capitalize() if word.lower() in ['i', 'earth'] else word for word in text.split())
|
278 |
return text
|
279 |
|
280 |
+
def detect_ai(text):
|
281 |
+
label, score = predict_en(text)
|
282 |
+
return label, score
|
283 |
+
|
284 |
def gradio_interface(text):
|
285 |
label, score = detect_ai(text)
|
286 |
corrected_text = paraphrase_and_correct(text)
|
287 |
return {label: score}, corrected_text
|
288 |
|
|
|
289 |
iface = gr.Interface(
|
290 |
fn=gradio_interface,
|
291 |
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
|
|
|
297 |
description="Detect AI-generated content and correct grammar issues."
|
298 |
)
|
299 |
|
300 |
+
if __name__ == "__main__":
|
301 |
+
iface.launch()
|