Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,15 +26,13 @@ spell = SpellChecker()
|
|
| 26 |
inflect_engine = inflect.engine()
|
| 27 |
|
| 28 |
# Ensure necessary NLTK data is downloaded
|
| 29 |
-
nltk.download('wordnet')
|
| 30 |
-
nltk.download('omw-1.4')
|
| 31 |
|
| 32 |
-
# Function to predict the label and score for English text (AI Detection)
|
| 33 |
def predict_en(text):
|
| 34 |
res = pipeline_en(text)[0]
|
| 35 |
return res['label'], res['score']
|
| 36 |
|
| 37 |
-
# Function to get synonyms using NLTK WordNet
|
| 38 |
def get_synonyms_nltk(word, pos):
|
| 39 |
synsets = wordnet.synsets(word, pos=pos)
|
| 40 |
if synsets:
|
|
@@ -42,14 +40,12 @@ def get_synonyms_nltk(word, pos):
|
|
| 42 |
return [lemma.name() for lemma in lemmas if lemma.name() != word]
|
| 43 |
return []
|
| 44 |
|
| 45 |
-
# Function to remove redundant and meaningless words
|
| 46 |
def remove_redundant_words(text):
|
| 47 |
doc = nlp(text)
|
| 48 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 49 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 50 |
return ' '.join(filtered_text)
|
| 51 |
|
| 52 |
-
# Function to capitalize the first letter of sentences and proper nouns
|
| 53 |
def capitalize_sentences_and_nouns(text):
|
| 54 |
doc = nlp(text)
|
| 55 |
corrected_text = []
|
|
@@ -57,9 +53,7 @@ def capitalize_sentences_and_nouns(text):
|
|
| 57 |
for sent in doc.sents:
|
| 58 |
sentence = []
|
| 59 |
for token in sent:
|
| 60 |
-
if token.i == sent.start
|
| 61 |
-
sentence.append(token.text.capitalize())
|
| 62 |
-
elif token.pos_ == "PROPN": # Proper noun
|
| 63 |
sentence.append(token.text.capitalize())
|
| 64 |
else:
|
| 65 |
sentence.append(token.text)
|
|
@@ -67,7 +61,6 @@ def capitalize_sentences_and_nouns(text):
|
|
| 67 |
|
| 68 |
return ' '.join(corrected_text)
|
| 69 |
|
| 70 |
-
# Function to correct tense errors in a sentence
|
| 71 |
def correct_tense_errors(text):
|
| 72 |
doc = nlp(text)
|
| 73 |
corrected_text = []
|
|
@@ -79,109 +72,75 @@ def correct_tense_errors(text):
|
|
| 79 |
corrected_text.append(token.text)
|
| 80 |
return ' '.join(corrected_text)
|
| 81 |
|
| 82 |
-
# Function to correct singular/plural errors
|
| 83 |
def correct_singular_plural_errors(text):
|
| 84 |
doc = nlp(text)
|
| 85 |
corrected_text = []
|
| 86 |
|
| 87 |
for token in doc:
|
| 88 |
if token.pos_ == "NOUN":
|
| 89 |
-
if token.tag_ == "NN"
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
| 96 |
-
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
|
| 97 |
-
else:
|
| 98 |
-
corrected_text.append(token.text)
|
| 99 |
else:
|
| 100 |
corrected_text.append(token.text)
|
| 101 |
|
| 102 |
return ' '.join(corrected_text)
|
| 103 |
|
| 104 |
-
# Function to check and correct article errors
|
| 105 |
def correct_article_errors(text):
|
| 106 |
doc = nlp(text)
|
| 107 |
corrected_text = []
|
| 108 |
-
for token in doc:
|
| 109 |
-
if token.text in ['a', 'an']:
|
| 110 |
-
next_token =
|
| 111 |
-
if
|
| 112 |
corrected_text.append("an")
|
| 113 |
-
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
| 114 |
-
corrected_text.append("a")
|
| 115 |
else:
|
| 116 |
-
corrected_text.append(
|
| 117 |
else:
|
| 118 |
corrected_text.append(token.text)
|
| 119 |
return ' '.join(corrected_text)
|
| 120 |
|
| 121 |
-
# Function to get the correct synonym while maintaining verb form
|
| 122 |
-
def replace_with_synonym(token):
|
| 123 |
-
pos = None
|
| 124 |
-
if token.pos_ == "VERB":
|
| 125 |
-
pos = wordnet.VERB
|
| 126 |
-
elif token.pos_ == "NOUN":
|
| 127 |
-
pos = wordnet.NOUN
|
| 128 |
-
elif token.pos_ == "ADJ":
|
| 129 |
-
pos = wordnet.ADJ
|
| 130 |
-
elif token.pos_ == "ADV":
|
| 131 |
-
pos = wordnet.ADV
|
| 132 |
-
|
| 133 |
-
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
| 134 |
-
|
| 135 |
-
if synonyms:
|
| 136 |
-
synonym = synonyms[0]
|
| 137 |
-
if token.tag_ == "VBG": # Present participle (e.g., running)
|
| 138 |
-
synonym = synonym + 'ing'
|
| 139 |
-
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
| 140 |
-
synonym = synonym + 'ed'
|
| 141 |
-
elif token.tag_ == "VBZ": # Third-person singular present
|
| 142 |
-
synonym = synonym + 's'
|
| 143 |
-
return synonym
|
| 144 |
-
return token.text
|
| 145 |
-
|
| 146 |
-
# Function to check for and avoid double negatives
|
| 147 |
def correct_double_negatives(text):
|
| 148 |
doc = nlp(text)
|
| 149 |
corrected_text = []
|
| 150 |
for token in doc:
|
| 151 |
-
if token.
|
| 152 |
-
|
| 153 |
else:
|
| 154 |
corrected_text.append(token.text)
|
| 155 |
return ' '.join(corrected_text)
|
| 156 |
|
| 157 |
-
# Function to ensure subject-verb agreement
|
| 158 |
def ensure_subject_verb_agreement(text):
|
| 159 |
doc = nlp(text)
|
| 160 |
corrected_text = []
|
| 161 |
for token in doc:
|
| 162 |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
| 163 |
-
if token.tag_ == "NN" and token.head.tag_ != "VBZ":
|
| 164 |
corrected_text.append(token.head.lemma_ + "s")
|
| 165 |
-
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
|
| 166 |
corrected_text.append(token.head.lemma_)
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
| 168 |
return ' '.join(corrected_text)
|
| 169 |
|
| 170 |
-
# Enhance the spell checker function
|
| 171 |
def enhanced_spell_check(text):
|
| 172 |
words = text.split()
|
| 173 |
corrected_words = []
|
| 174 |
for word in words:
|
| 175 |
-
if '_' in word:
|
| 176 |
sub_words = word.split('_')
|
| 177 |
-
corrected_sub_words = [spell.correction(w) for w in sub_words]
|
| 178 |
corrected_words.append('_'.join(corrected_sub_words))
|
| 179 |
else:
|
| 180 |
-
corrected_word = spell.correction(word)
|
| 181 |
-
corrected_words.append(corrected_word
|
| 182 |
return ' '.join(corrected_words)
|
| 183 |
|
| 184 |
-
# Function to correct common semantic errors
|
| 185 |
def correct_semantic_errors(text):
|
| 186 |
semantic_corrections = {
|
| 187 |
"animate_being": "animal",
|
|
@@ -199,69 +158,99 @@ def correct_semantic_errors(text):
|
|
| 199 |
"keeping": "maintaining",
|
| 200 |
"lend": "contribute",
|
| 201 |
"better": "improve",
|
| 202 |
-
"
|
| 203 |
-
"
|
| 204 |
-
"
|
| 205 |
-
"
|
| 206 |
-
"
|
| 207 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
}
|
| 209 |
|
| 210 |
words = text.split()
|
| 211 |
corrected_words = [semantic_corrections.get(word.lower(), word) for word in words]
|
| 212 |
return ' '.join(corrected_words)
|
| 213 |
|
| 214 |
-
# Enhance the punctuation correction function
|
| 215 |
def enhance_punctuation(text):
|
| 216 |
-
# Remove extra spaces before punctuation
|
| 217 |
text = re.sub(r'\s+([?.!,";:])', r'\1', text)
|
| 218 |
-
|
| 219 |
-
# Add space after punctuation if it's missing
|
| 220 |
text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text)
|
| 221 |
-
|
| 222 |
-
# Correct spacing for quotes
|
| 223 |
text = re.sub(r'\s*"\s*', '" ', text).strip()
|
| 224 |
-
|
| 225 |
-
# Ensure proper capitalization after sentence-ending punctuation
|
| 226 |
text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text)
|
| 227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
return text
|
| 229 |
|
| 230 |
-
# Function to handle possessives
|
| 231 |
def handle_possessives(text):
|
| 232 |
text = re.sub(r"\b(\w+)'s\b", r"\1's", text)
|
| 233 |
return text
|
| 234 |
|
| 235 |
-
# Function to rephrase text and replace words with their synonyms while maintaining form
|
| 236 |
def rephrase_with_synonyms(text):
|
| 237 |
doc = nlp(text)
|
| 238 |
rephrased_text = []
|
| 239 |
|
| 240 |
for token in doc:
|
| 241 |
-
if token.
|
| 242 |
rephrased_text.append("Earth")
|
| 243 |
continue
|
| 244 |
|
| 245 |
pos_tag = None
|
| 246 |
-
if token.pos_
|
| 247 |
-
pos_tag = wordnet.
|
| 248 |
-
elif token.pos_ == "VERB":
|
| 249 |
-
pos_tag = wordnet.VERB
|
| 250 |
-
elif token.pos_ == "ADJ":
|
| 251 |
-
pos_tag = wordnet.ADJ
|
| 252 |
-
elif token.pos_ == "ADV":
|
| 253 |
-
pos_tag = wordnet.ADV
|
| 254 |
|
| 255 |
if pos_tag:
|
| 256 |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
| 257 |
if synonyms:
|
| 258 |
-
synonym = synonyms[0]
|
| 259 |
if token.pos_ == "VERB":
|
| 260 |
-
if token.tag_ == "VBG":
|
| 261 |
synonym = synonym + 'ing'
|
| 262 |
-
elif token.tag_
|
| 263 |
synonym = synonym + 'ed'
|
| 264 |
-
elif token.tag_ == "VBZ":
|
| 265 |
synonym = synonym + 's'
|
| 266 |
rephrased_text.append(synonym)
|
| 267 |
else:
|
|
@@ -271,40 +260,32 @@ def rephrase_with_synonyms(text):
|
|
| 271 |
|
| 272 |
return ' '.join(rephrased_text)
|
| 273 |
|
| 274 |
-
# Function to detect AI-generated content
|
| 275 |
-
def detect_ai(text):
|
| 276 |
-
label, score = predict_en(text)
|
| 277 |
-
return label, score
|
| 278 |
-
|
| 279 |
-
# Enhance the paraphrase_and_correct function
|
| 280 |
def paraphrase_and_correct(text):
|
| 281 |
-
# Apply enhanced spell checking
|
| 282 |
text = enhanced_spell_check(text)
|
| 283 |
-
|
| 284 |
-
# Correct semantic errors
|
| 285 |
text = correct_semantic_errors(text)
|
| 286 |
-
|
| 287 |
-
# Apply existing corrections
|
| 288 |
text = remove_redundant_words(text)
|
| 289 |
text = capitalize_sentences_and_nouns(text)
|
| 290 |
text = correct_tense_errors(text)
|
| 291 |
text = correct_singular_plural_errors(text)
|
| 292 |
text = correct_article_errors(text)
|
| 293 |
text = enhance_punctuation(text)
|
|
|
|
| 294 |
text = handle_possessives(text)
|
| 295 |
text = rephrase_with_synonyms(text)
|
| 296 |
text = correct_double_negatives(text)
|
| 297 |
text = ensure_subject_verb_agreement(text)
|
| 298 |
-
|
| 299 |
return text
|
| 300 |
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
| 302 |
def gradio_interface(text):
|
| 303 |
label, score = detect_ai(text)
|
| 304 |
corrected_text = paraphrase_and_correct(text)
|
| 305 |
return {label: score}, corrected_text
|
| 306 |
|
| 307 |
-
# Create Gradio interface
|
| 308 |
iface = gr.Interface(
|
| 309 |
fn=gradio_interface,
|
| 310 |
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
|
|
@@ -316,5 +297,5 @@ iface = gr.Interface(
|
|
| 316 |
description="Detect AI-generated content and correct grammar issues."
|
| 317 |
)
|
| 318 |
|
| 319 |
-
|
| 320 |
-
iface.launch()
|
|
|
|
| 26 |
inflect_engine = inflect.engine()
|
| 27 |
|
| 28 |
# Ensure necessary NLTK data is downloaded
|
| 29 |
+
nltk.download('wordnet', quiet=True)
|
| 30 |
+
nltk.download('omw-1.4', quiet=True)
|
| 31 |
|
|
|
|
| 32 |
def predict_en(text):
|
| 33 |
res = pipeline_en(text)[0]
|
| 34 |
return res['label'], res['score']
|
| 35 |
|
|
|
|
| 36 |
def get_synonyms_nltk(word, pos):
|
| 37 |
synsets = wordnet.synsets(word, pos=pos)
|
| 38 |
if synsets:
|
|
|
|
| 40 |
return [lemma.name() for lemma in lemmas if lemma.name() != word]
|
| 41 |
return []
|
| 42 |
|
|
|
|
| 43 |
def remove_redundant_words(text):
|
| 44 |
doc = nlp(text)
|
| 45 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 46 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 47 |
return ' '.join(filtered_text)
|
| 48 |
|
|
|
|
| 49 |
def capitalize_sentences_and_nouns(text):
|
| 50 |
doc = nlp(text)
|
| 51 |
corrected_text = []
|
|
|
|
| 53 |
for sent in doc.sents:
|
| 54 |
sentence = []
|
| 55 |
for token in sent:
|
| 56 |
+
if token.i == sent.start or token.pos_ == "PROPN":
|
|
|
|
|
|
|
| 57 |
sentence.append(token.text.capitalize())
|
| 58 |
else:
|
| 59 |
sentence.append(token.text)
|
|
|
|
| 61 |
|
| 62 |
return ' '.join(corrected_text)
|
| 63 |
|
|
|
|
| 64 |
def correct_tense_errors(text):
|
| 65 |
doc = nlp(text)
|
| 66 |
corrected_text = []
|
|
|
|
| 72 |
corrected_text.append(token.text)
|
| 73 |
return ' '.join(corrected_text)
|
| 74 |
|
|
|
|
| 75 |
def correct_singular_plural_errors(text):
|
| 76 |
doc = nlp(text)
|
| 77 |
corrected_text = []
|
| 78 |
|
| 79 |
for token in doc:
|
| 80 |
if token.pos_ == "NOUN":
|
| 81 |
+
if token.tag_ == "NN" and any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
| 82 |
+
corrected_text.append(inflect_engine.plural(token.lemma_))
|
| 83 |
+
elif token.tag_ == "NNS" and any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
| 84 |
+
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
|
| 85 |
+
else:
|
| 86 |
+
corrected_text.append(token.text)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
else:
|
| 88 |
corrected_text.append(token.text)
|
| 89 |
|
| 90 |
return ' '.join(corrected_text)
|
| 91 |
|
|
|
|
| 92 |
def correct_article_errors(text):
|
| 93 |
doc = nlp(text)
|
| 94 |
corrected_text = []
|
| 95 |
+
for i, token in enumerate(doc):
|
| 96 |
+
if token.text.lower() in ['a', 'an']:
|
| 97 |
+
next_token = doc[i + 1] if i + 1 < len(doc) else None
|
| 98 |
+
if next_token and next_token.text[0].lower() in "aeiou":
|
| 99 |
corrected_text.append("an")
|
|
|
|
|
|
|
| 100 |
else:
|
| 101 |
+
corrected_text.append("a")
|
| 102 |
else:
|
| 103 |
corrected_text.append(token.text)
|
| 104 |
return ' '.join(corrected_text)
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
def correct_double_negatives(text):
|
| 107 |
doc = nlp(text)
|
| 108 |
corrected_text = []
|
| 109 |
for token in doc:
|
| 110 |
+
if token.dep_ == "neg" and any(child.dep_ == "neg" for child in token.head.children):
|
| 111 |
+
continue
|
| 112 |
else:
|
| 113 |
corrected_text.append(token.text)
|
| 114 |
return ' '.join(corrected_text)
|
| 115 |
|
|
|
|
| 116 |
def ensure_subject_verb_agreement(text):
|
| 117 |
doc = nlp(text)
|
| 118 |
corrected_text = []
|
| 119 |
for token in doc:
|
| 120 |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
| 121 |
+
if token.tag_ == "NN" and token.head.tag_ != "VBZ":
|
| 122 |
corrected_text.append(token.head.lemma_ + "s")
|
| 123 |
+
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
|
| 124 |
corrected_text.append(token.head.lemma_)
|
| 125 |
+
else:
|
| 126 |
+
corrected_text.append(token.head.text)
|
| 127 |
+
else:
|
| 128 |
+
corrected_text.append(token.text)
|
| 129 |
return ' '.join(corrected_text)
|
| 130 |
|
|
|
|
| 131 |
def enhanced_spell_check(text):
|
| 132 |
words = text.split()
|
| 133 |
corrected_words = []
|
| 134 |
for word in words:
|
| 135 |
+
if '_' in word:
|
| 136 |
sub_words = word.split('_')
|
| 137 |
+
corrected_sub_words = [spell.correction(w) or w for w in sub_words]
|
| 138 |
corrected_words.append('_'.join(corrected_sub_words))
|
| 139 |
else:
|
| 140 |
+
corrected_word = spell.correction(word) or word
|
| 141 |
+
corrected_words.append(corrected_word)
|
| 142 |
return ' '.join(corrected_words)
|
| 143 |
|
|
|
|
| 144 |
def correct_semantic_errors(text):
|
| 145 |
semantic_corrections = {
|
| 146 |
"animate_being": "animal",
|
|
|
|
| 158 |
"keeping": "maintaining",
|
| 159 |
"lend": "contribute",
|
| 160 |
"better": "improve",
|
| 161 |
+
"cardinal": "key",
|
| 162 |
+
"expeditiously": "efficiently",
|
| 163 |
+
"marauder": "predator",
|
| 164 |
+
"quarry": "prey",
|
| 165 |
+
"forestalling": "preventing",
|
| 166 |
+
"bend": "turn",
|
| 167 |
+
"works": "plant",
|
| 168 |
+
"croping": "grazing",
|
| 169 |
+
"flora": "vegetation",
|
| 170 |
+
"dynamical": "dynamic",
|
| 171 |
+
"alteration": "change",
|
| 172 |
+
"add-on": "addition",
|
| 173 |
+
"indispensable": "essential",
|
| 174 |
+
"nutrient": "food",
|
| 175 |
+
"harvest": "crops",
|
| 176 |
+
"pollenateing": "pollinating",
|
| 177 |
+
"divers": "diverse",
|
| 178 |
+
"beginning": "source",
|
| 179 |
+
"homo": "humans",
|
| 180 |
+
"fall_in": "collapse",
|
| 181 |
+
"takeing": "leading",
|
| 182 |
+
"coinage": "species",
|
| 183 |
+
"trust": "rely",
|
| 184 |
+
"angleworm": "earthworm",
|
| 185 |
+
"interrupt": "break",
|
| 186 |
+
"affair": "matter",
|
| 187 |
+
"air_out": "aerate",
|
| 188 |
+
"alimentary": "nutrient",
|
| 189 |
+
"distributeed": "spread",
|
| 190 |
+
"country": "areas",
|
| 191 |
+
"reconstruct": "restore",
|
| 192 |
+
"debauched": "degraded",
|
| 193 |
+
"giant": "whales",
|
| 194 |
+
"organic_structure": "bodies",
|
| 195 |
+
"decease": "die",
|
| 196 |
+
"carcase": "carcasses",
|
| 197 |
+
"pin_downing": "trapping",
|
| 198 |
+
"cut_downs": "reduces",
|
| 199 |
+
"ambiance": "atmosphere",
|
| 200 |
+
"extenuateing": "mitigating",
|
| 201 |
+
"decision": "conclusion",
|
| 202 |
+
"doing": "making",
|
| 203 |
+
"prolongs": "sustains",
|
| 204 |
+
"home_ground": "habitats",
|
| 205 |
+
"continueing": "preserving",
|
| 206 |
+
"populateing": "living",
|
| 207 |
+
"beingness": "beings"
|
| 208 |
}
|
| 209 |
|
| 210 |
words = text.split()
|
| 211 |
corrected_words = [semantic_corrections.get(word.lower(), word) for word in words]
|
| 212 |
return ' '.join(corrected_words)
|
| 213 |
|
|
|
|
| 214 |
def enhance_punctuation(text):
|
|
|
|
| 215 |
text = re.sub(r'\s+([?.!,";:])', r'\1', text)
|
|
|
|
|
|
|
| 216 |
text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text)
|
|
|
|
|
|
|
| 217 |
text = re.sub(r'\s*"\s*', '" ', text).strip()
|
|
|
|
|
|
|
| 218 |
text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text)
|
| 219 |
+
text = re.sub(r'([a-z])\s+([A-Z])', r'\1. \2', text)
|
| 220 |
+
return text
|
| 221 |
+
|
| 222 |
+
def correct_apostrophes(text):
|
| 223 |
+
text = re.sub(r"\b(\w+)s\b(?<!\'s)", r"\1's", text)
|
| 224 |
+
text = re.sub(r"\b(\w+)s'\b", r"\1s'", text)
|
| 225 |
return text
|
| 226 |
|
|
|
|
| 227 |
def handle_possessives(text):
|
| 228 |
text = re.sub(r"\b(\w+)'s\b", r"\1's", text)
|
| 229 |
return text
|
| 230 |
|
|
|
|
| 231 |
def rephrase_with_synonyms(text):
|
| 232 |
doc = nlp(text)
|
| 233 |
rephrased_text = []
|
| 234 |
|
| 235 |
for token in doc:
|
| 236 |
+
if token.text.lower() == "earth":
|
| 237 |
rephrased_text.append("Earth")
|
| 238 |
continue
|
| 239 |
|
| 240 |
pos_tag = None
|
| 241 |
+
if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"]:
|
| 242 |
+
pos_tag = getattr(wordnet, token.pos_)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
if pos_tag:
|
| 245 |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
| 246 |
if synonyms:
|
| 247 |
+
synonym = synonyms[0]
|
| 248 |
if token.pos_ == "VERB":
|
| 249 |
+
if token.tag_ == "VBG":
|
| 250 |
synonym = synonym + 'ing'
|
| 251 |
+
elif token.tag_ in ["VBD", "VBN"]:
|
| 252 |
synonym = synonym + 'ed'
|
| 253 |
+
elif token.tag_ == "VBZ":
|
| 254 |
synonym = synonym + 's'
|
| 255 |
rephrased_text.append(synonym)
|
| 256 |
else:
|
|
|
|
| 260 |
|
| 261 |
return ' '.join(rephrased_text)
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
def paraphrase_and_correct(text):
|
|
|
|
| 264 |
text = enhanced_spell_check(text)
|
|
|
|
|
|
|
| 265 |
text = correct_semantic_errors(text)
|
|
|
|
|
|
|
| 266 |
text = remove_redundant_words(text)
|
| 267 |
text = capitalize_sentences_and_nouns(text)
|
| 268 |
text = correct_tense_errors(text)
|
| 269 |
text = correct_singular_plural_errors(text)
|
| 270 |
text = correct_article_errors(text)
|
| 271 |
text = enhance_punctuation(text)
|
| 272 |
+
text = correct_apostrophes(text)
|
| 273 |
text = handle_possessives(text)
|
| 274 |
text = rephrase_with_synonyms(text)
|
| 275 |
text = correct_double_negatives(text)
|
| 276 |
text = ensure_subject_verb_agreement(text)
|
| 277 |
+
text = ' '.join(word.capitalize() if word.lower() in ['i', 'earth'] else word for word in text.split())
|
| 278 |
return text
|
| 279 |
|
| 280 |
+
def detect_ai(text):
|
| 281 |
+
label, score = predict_en(text)
|
| 282 |
+
return label, score
|
| 283 |
+
|
| 284 |
def gradio_interface(text):
|
| 285 |
label, score = detect_ai(text)
|
| 286 |
corrected_text = paraphrase_and_correct(text)
|
| 287 |
return {label: score}, corrected_text
|
| 288 |
|
|
|
|
| 289 |
iface = gr.Interface(
|
| 290 |
fn=gradio_interface,
|
| 291 |
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
|
|
|
|
| 297 |
description="Detect AI-generated content and correct grammar issues."
|
| 298 |
)
|
| 299 |
|
| 300 |
+
if __name__ == "__main__":
|
| 301 |
+
iface.launch()
|