File size: 9,944 Bytes
0f2a23a
e4351cc
0f2a23a
 
 
 
bf4908b
 
cf3f184
e4351cc
353216c
cce92ec
 
 
 
 
 
 
0f2a23a
 
e4351cc
cf3f184
bf4908b
cf3f184
 
 
0f2a23a
bf4908b
42515fd
 
0f2a23a
486bbd6
 
 
 
 
 
 
 
cf3f184
486bbd6
 
 
cf3f184
486bbd6
cf3f184
 
 
 
 
 
 
 
 
 
42515fd
cf3f184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42515fd
 
 
 
 
 
cf3f184
 
 
 
 
 
 
 
42515fd
 
 
 
cf3f184
 
42515fd
cf3f184
 
 
 
 
 
 
 
42515fd
 
cf3f184
 
 
 
 
 
 
 
 
42515fd
cf3f184
42515fd
cf3f184
42515fd
 
 
 
cf3f184
486bbd6
353216c
486bbd6
cf3f184
 
42515fd
353216c
42515fd
353216c
 
42515fd
 
353216c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42515fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353216c
 
 
 
486bbd6
 
353216c
79ca043
353216c
 
 
42515fd
 
 
 
 
 
cf3f184
 
 
79ca043
cf3f184
 
486bbd6
 
 
 
 
42515fd
cf3f184
 
 
 
42515fd
 
486bbd6
 
 
cf3f184
42515fd
cf3f184
42515fd
cf3f184
42515fd
cf3f184
42515fd
cf3f184
 
 
 
486bbd6
 
 
 
 
353216c
 
 
 
 
 
 
 
 
42515fd
353216c
 
 
 
42515fd
353216c
 
42515fd
 
 
 
cf3f184
a2b6ad0
cf3f184
a2b6ad0
 
 
 
 
 
 
 
 
 
 
 
cf3f184
42515fd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import os
import gradio as gr
from transformers import pipeline
import spacy
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import re
import inflect

# Initialize components
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    print("Downloading spaCy model...")
    spacy.cli.download("en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Initialize the spell checker
spell = SpellChecker()

# Initialize the inflect engine for pluralization
inflect_engine = inflect.engine()

# Ensure necessary NLTK data is downloaded
nltk.download('wordnet', quiet=True)
nltk.download('omw-1.4', quiet=True)

def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

def get_synonyms_nltk(word, pos):
    synsets = wordnet.synsets(word, pos=pos)
    if synsets:
        lemmas = synsets[0].lemmas()
        return [lemma.name() for lemma in lemmas if lemma.name() != word]
    return []

def remove_redundant_words(text):
    doc = nlp(text)
    meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
    filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
    return ' '.join(filtered_text)

def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start or token.pos_ == "PROPN":
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

def correct_singular_plural_errors(text):
    doc = nlp(text)
    corrected_text = []
    
    for token in doc:
        if token.pos_ == "NOUN":
            if token.tag_ == "NN" and any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
                corrected_text.append(inflect_engine.plural(token.lemma_))
            elif token.tag_ == "NNS" and any(child.text.lower() in ['a', 'one'] for child in token.head.children):
                corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    
    return ' '.join(corrected_text)

def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for i, token in enumerate(doc):
        if token.text.lower() in ['a', 'an']:
            next_token = doc[i + 1] if i + 1 < len(doc) else None
            if next_token and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            else:
                corrected_text.append("a")
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

def correct_double_negatives(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.dep_ == "neg" and any(child.dep_ == "neg" for child in token.head.children):
            continue
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

def ensure_subject_verb_agreement(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
            if token.tag_ == "NN" and token.head.tag_ != "VBZ":
                corrected_text.append(token.head.lemma_ + "s")
            elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
                corrected_text.append(token.head.lemma_)
            else:
                corrected_text.append(token.head.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

def enhanced_spell_check(text):
    words = text.split()
    corrected_words = []
    for word in words:
        if '_' in word:
            sub_words = word.split('_')
            corrected_sub_words = [spell.correction(w) or w for w in sub_words]
            corrected_words.append('_'.join(corrected_sub_words))
        else:
            corrected_word = spell.correction(word) or word
            corrected_words.append(corrected_word)
    return ' '.join(corrected_words)

def correct_semantic_errors(text):
    semantic_corrections = {
        "animate_being": "animal",
        "little": "smallest",
        "big": "largest",
        "mammalian": "mammals",
        "universe": "world",
        "manner": "ways",
        "continue": "preserve",
        "dirt": "soil",
        "wellness": "health",
        "modulate": "regulate",
        "clime": "climate",
        "function": "role",
        "keeping": "maintaining",
        "lend": "contribute",
        "better": "improve",
        "cardinal": "key",
        "expeditiously": "efficiently",
        "marauder": "predator",
        "quarry": "prey",
        "forestalling": "preventing",
        "bend": "turn",
        "works": "plant",
        "croping": "grazing",
        "flora": "vegetation",
        "dynamical": "dynamic",
        "alteration": "change",
        "add-on": "addition",
        "indispensable": "essential",
        "nutrient": "food",
        "harvest": "crops",
        "pollenateing": "pollinating",
        "divers": "diverse",
        "beginning": "source",
        "homo": "humans",
        "fall_in": "collapse",
        "takeing": "leading",
        "coinage": "species",
        "trust": "rely",
        "angleworm": "earthworm",
        "interrupt": "break",
        "affair": "matter",
        "air_out": "aerate",
        "alimentary": "nutrient",
        "distributeed": "spread",
        "country": "areas",
        "reconstruct": "restore",
        "debauched": "degraded",
        "giant": "whales",
        "organic_structure": "bodies",
        "decease": "die",
        "carcase": "carcasses",
        "pin_downing": "trapping",
        "cut_downs": "reduces",
        "ambiance": "atmosphere",
        "extenuateing": "mitigating",
        "decision": "conclusion",
        "doing": "making",
        "prolongs": "sustains",
        "home_ground": "habitats",
        "continueing": "preserving",
        "populateing": "living",
        "beingness": "beings"
    }
    
    words = text.split()
    corrected_words = [semantic_corrections.get(word.lower(), word) for word in words]
    return ' '.join(corrected_words)

def enhance_punctuation(text):
    text = re.sub(r'\s+([?.!,";:])', r'\1', text)
    text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text)
    text = re.sub(r'\s*"\s*', '" ', text).strip()
    text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text)
    text = re.sub(r'([a-z])\s+([A-Z])', r'\1. \2', text)
    return text

def correct_apostrophes(text):
    text = re.sub(r"\b(\w+)s\b(?<!\'s)", r"\1's", text)
    text = re.sub(r"\b(\w+)s'\b", r"\1s'", text)
    return text

def handle_possessives(text):
    text = re.sub(r"\b(\w+)'s\b", r"\1's", text)
    return text

def rephrase_with_synonyms(text):
    doc = nlp(text)
    rephrased_text = []

    for token in doc:
        if token.text.lower() == "earth":
            rephrased_text.append("Earth")
            continue
        
        pos_tag = None
        if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"]:
            pos_tag = getattr(wordnet, token.pos_)
        
        if pos_tag:
            synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
            if synonyms:
                synonym = synonyms[0]
                if token.pos_ == "VERB":
                    if token.tag_ == "VBG":
                        synonym = synonym + 'ing'
                    elif token.tag_ in ["VBD", "VBN"]:
                        synonym = synonym + 'ed'
                    elif token.tag_ == "VBZ":
                        synonym = synonym + 's'
                rephrased_text.append(synonym)
            else:
                rephrased_text.append(token.text)
        else:
            rephrased_text.append(token.text)

    return ' '.join(rephrased_text)

def paraphrase_and_correct(text):
    text = enhanced_spell_check(text)
    text = correct_semantic_errors(text)
    text = remove_redundant_words(text)
    text = capitalize_sentences_and_nouns(text)
    text = correct_tense_errors(text)
    text = correct_singular_plural_errors(text)
    text = correct_article_errors(text)
    text = enhance_punctuation(text)
    text = correct_apostrophes(text)
    text = handle_possessives(text)
    text = rephrase_with_synonyms(text)
    text = correct_double_negatives(text)
    text = ensure_subject_verb_agreement(text)
    text = ' '.join(word.capitalize() if word.lower() in ['i', 'earth'] else word for word in text.split())
    return text

def detect_ai(text):
    label, score = predict_en(text)
    return label, score

def gradio_interface(text):
    label, score = detect_ai(text)
    corrected_text = paraphrase_and_correct(text)
    return {label: score}, corrected_text

iface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
    outputs=[
        gr.Label(num_top_classes=1),
        gr.Textbox(label="Corrected Text")
    ],
    title="AI Detection and Grammar Correction",
    description="Detect AI-generated content and correct grammar issues."
)

if __name__ == "__main__":
    iface.launch()