Spaces:
Sleeping
Sleeping
File size: 9,944 Bytes
0f2a23a e4351cc 0f2a23a bf4908b cf3f184 e4351cc 353216c cce92ec 0f2a23a e4351cc cf3f184 bf4908b cf3f184 0f2a23a bf4908b 42515fd 0f2a23a 486bbd6 cf3f184 486bbd6 cf3f184 486bbd6 cf3f184 42515fd cf3f184 42515fd cf3f184 42515fd cf3f184 42515fd cf3f184 42515fd cf3f184 42515fd cf3f184 42515fd cf3f184 42515fd cf3f184 486bbd6 353216c 486bbd6 cf3f184 42515fd 353216c 42515fd 353216c 42515fd 353216c 42515fd 353216c 486bbd6 353216c 79ca043 353216c 42515fd cf3f184 79ca043 cf3f184 486bbd6 42515fd cf3f184 42515fd 486bbd6 cf3f184 42515fd cf3f184 42515fd cf3f184 42515fd cf3f184 42515fd cf3f184 486bbd6 353216c 42515fd 353216c 42515fd 353216c 42515fd cf3f184 a2b6ad0 cf3f184 a2b6ad0 cf3f184 42515fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import re
import inflect
# Initialize components
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
print("Downloading spaCy model...")
spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Initialize the spell checker
spell = SpellChecker()
# Initialize the inflect engine for pluralization
inflect_engine = inflect.engine()
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet', quiet=True)
nltk.download('omw-1.4', quiet=True)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas if lemma.name() != word]
return []
def remove_redundant_words(text):
doc = nlp(text)
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
return ' '.join(filtered_text)
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start or token.pos_ == "PROPN":
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
corrected_text.append(lemma)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def correct_singular_plural_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN" and any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
corrected_text.append(inflect_engine.plural(token.lemma_))
elif token.tag_ == "NNS" and any(child.text.lower() in ['a', 'one'] for child in token.head.children):
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
for i, token in enumerate(doc):
if token.text.lower() in ['a', 'an']:
next_token = doc[i + 1] if i + 1 < len(doc) else None
if next_token and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
else:
corrected_text.append("a")
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def correct_double_negatives(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.dep_ == "neg" and any(child.dep_ == "neg" for child in token.head.children):
continue
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def ensure_subject_verb_agreement(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
if token.tag_ == "NN" and token.head.tag_ != "VBZ":
corrected_text.append(token.head.lemma_ + "s")
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
corrected_text.append(token.head.lemma_)
else:
corrected_text.append(token.head.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def enhanced_spell_check(text):
words = text.split()
corrected_words = []
for word in words:
if '_' in word:
sub_words = word.split('_')
corrected_sub_words = [spell.correction(w) or w for w in sub_words]
corrected_words.append('_'.join(corrected_sub_words))
else:
corrected_word = spell.correction(word) or word
corrected_words.append(corrected_word)
return ' '.join(corrected_words)
def correct_semantic_errors(text):
semantic_corrections = {
"animate_being": "animal",
"little": "smallest",
"big": "largest",
"mammalian": "mammals",
"universe": "world",
"manner": "ways",
"continue": "preserve",
"dirt": "soil",
"wellness": "health",
"modulate": "regulate",
"clime": "climate",
"function": "role",
"keeping": "maintaining",
"lend": "contribute",
"better": "improve",
"cardinal": "key",
"expeditiously": "efficiently",
"marauder": "predator",
"quarry": "prey",
"forestalling": "preventing",
"bend": "turn",
"works": "plant",
"croping": "grazing",
"flora": "vegetation",
"dynamical": "dynamic",
"alteration": "change",
"add-on": "addition",
"indispensable": "essential",
"nutrient": "food",
"harvest": "crops",
"pollenateing": "pollinating",
"divers": "diverse",
"beginning": "source",
"homo": "humans",
"fall_in": "collapse",
"takeing": "leading",
"coinage": "species",
"trust": "rely",
"angleworm": "earthworm",
"interrupt": "break",
"affair": "matter",
"air_out": "aerate",
"alimentary": "nutrient",
"distributeed": "spread",
"country": "areas",
"reconstruct": "restore",
"debauched": "degraded",
"giant": "whales",
"organic_structure": "bodies",
"decease": "die",
"carcase": "carcasses",
"pin_downing": "trapping",
"cut_downs": "reduces",
"ambiance": "atmosphere",
"extenuateing": "mitigating",
"decision": "conclusion",
"doing": "making",
"prolongs": "sustains",
"home_ground": "habitats",
"continueing": "preserving",
"populateing": "living",
"beingness": "beings"
}
words = text.split()
corrected_words = [semantic_corrections.get(word.lower(), word) for word in words]
return ' '.join(corrected_words)
def enhance_punctuation(text):
text = re.sub(r'\s+([?.!,";:])', r'\1', text)
text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text)
text = re.sub(r'\s*"\s*', '" ', text).strip()
text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text)
text = re.sub(r'([a-z])\s+([A-Z])', r'\1. \2', text)
return text
def correct_apostrophes(text):
text = re.sub(r"\b(\w+)s\b(?<!\'s)", r"\1's", text)
text = re.sub(r"\b(\w+)s'\b", r"\1s'", text)
return text
def handle_possessives(text):
text = re.sub(r"\b(\w+)'s\b", r"\1's", text)
return text
def rephrase_with_synonyms(text):
doc = nlp(text)
rephrased_text = []
for token in doc:
if token.text.lower() == "earth":
rephrased_text.append("Earth")
continue
pos_tag = None
if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"]:
pos_tag = getattr(wordnet, token.pos_)
if pos_tag:
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
if synonyms:
synonym = synonyms[0]
if token.pos_ == "VERB":
if token.tag_ == "VBG":
synonym = synonym + 'ing'
elif token.tag_ in ["VBD", "VBN"]:
synonym = synonym + 'ed'
elif token.tag_ == "VBZ":
synonym = synonym + 's'
rephrased_text.append(synonym)
else:
rephrased_text.append(token.text)
else:
rephrased_text.append(token.text)
return ' '.join(rephrased_text)
def paraphrase_and_correct(text):
text = enhanced_spell_check(text)
text = correct_semantic_errors(text)
text = remove_redundant_words(text)
text = capitalize_sentences_and_nouns(text)
text = correct_tense_errors(text)
text = correct_singular_plural_errors(text)
text = correct_article_errors(text)
text = enhance_punctuation(text)
text = correct_apostrophes(text)
text = handle_possessives(text)
text = rephrase_with_synonyms(text)
text = correct_double_negatives(text)
text = ensure_subject_verb_agreement(text)
text = ' '.join(word.capitalize() if word.lower() in ['i', 'earth'] else word for word in text.split())
return text
def detect_ai(text):
label, score = predict_en(text)
return label, score
def gradio_interface(text):
label, score = detect_ai(text)
corrected_text = paraphrase_and_correct(text)
return {label: score}, corrected_text
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."),
outputs=[
gr.Label(num_top_classes=1),
gr.Textbox(label="Corrected Text")
],
title="AI Detection and Grammar Correction",
description="Detect AI-generated content and correct grammar issues."
)
if __name__ == "__main__":
iface.launch() |