File size: 6,040 Bytes
53a5038
41b8230
 
 
 
 
5cf3079
41b8230
 
ba9e337
9392822
41b8230
7bc17d6
41b8230
 
 
05bf013
41b8230
 
 
125b60f
3d03f6e
 
 
41b8230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43c1570
 
41b8230
 
 
 
 
 
 
 
 
 
 
 
53a5038
 
ba9e337
824b61b
 
 
 
 
 
ba9e337
97d3ce4
 
 
 
 
ba9e337
 
 
 
 
 
97d3ce4
ba9e337
97d3ce4
ba9e337
97d3ce4
ba9e337
 
 
 
 
 
 
 
 
 
 
 
97d3ce4
 
 
 
 
 
 
 
 
 
 
 
41b8230
a75a01d
fe10fad
 
 
 
 
 
 
 
 
 
 
 
 
97d3ce4
 
 
 
 
 
 
 
41b8230
97d3ce4
 
 
 
 
 
fe10fad
97d3ce4
 
 
 
 
 
 
 
 
 
 
 
41b8230
97d3ce4
 
21340af
 
97d3ce4
 
21340af
 
97d3ce4
ba9e337
97d3ce4
 
 
ba9e337
21340af
 
 
 
 
 
 
 
97d3ce4
 
 
 
21340af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from transformers import AutoConfig, AutoTokenizer, pipeline, AutoModelForCausalLM
from langchain_community.document_loaders import DirectoryLoader
import torch
import re
import requests
from urllib.parse import urlencode
import transformers
import spaces

# Initialize embeddings and ChromaDB
model_name = "sentence-transformers/all-mpnet-base-v2"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_kwargs = {"device": device}
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)

loader = DirectoryLoader('./example', glob="**/*.pdf", recursive=True, use_multithreading=True)
docs = loader.load()
vectordb = Chroma.from_documents(documents=docs, embedding=embeddings, persist_directory="companies_db")
books_db = Chroma(persist_directory="./companies_db", embedding_function=embeddings)
books_db_client = books_db.as_retriever()

# Initialize the model and tokenizer
model_name = "stabilityai/stablelm-zephyr-3b"
model_config = transformers.AutoConfig.from_pretrained(model_name, max_new_tokens=1024)
model = transformers.AutoModelForCausalLM.from_pretrained(
    model_name,
    trust_remote_code=True,
    config=model_config,
    device_map=device,
)

tokenizer = AutoTokenizer.from_pretrained(model_name)

query_pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    return_full_text=True,
    torch_dtype=torch.float16,
    device_map=device,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    top_k=50,
    max_new_tokens=256
)

llm = HuggingFacePipeline(pipeline=query_pipeline)

books_db_client_retriever = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=books_db_client,
    verbose=True
)

# OAuth Configuration
TENANT_ID = '2b093ced-2571-463f-bc3e-b4f8bcb427ee'
CLIENT_ID = '2a7c884c-942d-49e2-9e5d-7a29d8a0d3e5'
CLIENT_SECRET = 'EOF8Q~kKHCRgx8tnlLM-H8e93ifetxI6x7sU6bGW'
REDIRECT_URI = 'https://sanjeevbora-chatbot.hf.space/'
AUTH_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/authorize"
TOKEN_URL = f"https://login.microsoftonline.com/2b093ced-2571-463f-bc3e-b4f8bcb427ee/oauth2/v2.0/token"

# Global variable to store the access token
access_token = None

# OAuth Authorization URL with parameters
def get_auth_url():
    params = {
        'client_id': CLIENT_ID,
        'response_type': 'code',
        'redirect_uri': REDIRECT_URI,
        'response_mode': 'query',
        'scope': 'User.Read',
        'state': '12345'  # Optional state parameter
    }
    return f"{AUTH_URL}?{urlencode(params)}"

# Exchange authorization code for an access token
def exchange_code_for_token(auth_code):
    data = {
        'grant_type': 'authorization_code',
        'client_id': CLIENT_ID,
        'client_secret': CLIENT_SECRET,
        'code': auth_code,
        'redirect_uri': REDIRECT_URI
    }
    response = requests.post(TOKEN_URL, data=data)
    token_data = response.json()
    return token_data.get('access_token')

# Function to fetch user profile from Microsoft Graph
def get_user_profile(token):
    headers = {
        'Authorization': f'Bearer {token}'
    }
    response = requests.get(GRAPH_API_URL, headers=headers)
    return response.json()

# Function to check if the user is authenticated
def is_authenticated():
    return access_token is not None

# Function to retrieve answer using the RAG system
@spaces.GPU(duration=60)
def test_rag(query):
    books_retriever = books_db_client_retriever.run(query)
    
    # Extract the relevant answer using regex
    corrected_text_match = re.search(r"Helpful Answer:(.*)", books_retriever, re.DOTALL)
    
    if corrected_text_match:
        corrected_text_books = corrected_text_match.group(1).strip()
    else:
        corrected_text_books = "No helpful answer found."
    
    return corrected_text_books
    
# Gradio app with OAuth integration
def chat_interface():
    global access_token

    # If the user is not authenticated, redirect to Microsoft login
    if not is_authenticated():
        auth_url = get_auth_url()
        return gr.Markdown(f"Please [log in]({auth_url}) to use the chatbot.")
    
    # Gradio chatbot interface
    def chat(query, history=None):
        if history is None:
            history = []
        if query:
            # Chatbot logic here
            answer = test_rag(query)
            history.append((query, answer))
        return history, ""  # Clear input after submission

    with gr.Blocks() as interface:
        gr.Markdown("## RAG Chatbot")
        gr.Markdown("Ask a question and get answers based on retrieved documents.")
        
        input_box = gr.Textbox(label="Enter your question", placeholder="Type your question here...")
        submit_btn = gr.Button("Submit")
        chat_history = gr.Chatbot(label="Chat History")
        
        submit_btn.click(chat, inputs=[input_box, chat_history], outputs=[chat_history, input_box])
    
    return interface

# Function to handle OAuth callback
def handle_auth_callback(auth_code):
    global access_token

    # Exchange authorization code for access token
    access_token = exchange_code_for_token(auth_code)
    return "Authentication successful. You can now use the chatbot."

# Gradio app launch
with gr.Blocks() as app:
    gr.Markdown("## OAuth2.0 Chatbot")

    # Add an input field to manually input the authorization code for testing
    auth_code_input = gr.Textbox(label="Enter the OAuth Authorization Code")

    # Button to handle authentication and exchange the code for the access token
    auth_button = gr.Button("Authenticate")

    # Callback for authentication
    auth_button.click(fn=handle_auth_callback, inputs=auth_code_input, outputs="text")

    # Display the chat interface or authentication prompt
    chat_interface()

app.launch()