Spaces:
Sleeping
Sleeping
File size: 4,047 Bytes
0f7e74b fee4ed8 0f7e74b fee4ed8 0f7e74b 047d5b0 cc65489 13e77a1 cc65489 047d5b0 73bea8b b4a533c 62fbd16 047d5b0 29401a0 88c1db0 22b8a05 cc65489 73bea8b a35f404 cc65489 fa64131 22b8a05 fa64131 62fbd16 596475f 62fbd16 596475f fa64131 62fbd16 22b8a05 fa64131 73bea8b 62fbd16 22b8a05 fa64131 22b8a05 62fbd16 22b8a05 0f7e74b 78895ec a587147 1341b34 72f8a5d ba816d0 78895ec 72f8a5d 78895ec 1341b34 72f8a5d 78895ec a587147 047d5b0 b4a533c 88c1db0 62fbd16 aad65ce d862984 aad65ce 49572dd aad65ce 49572dd aad65ce 49572dd aad65ce 49572dd aad65ce 49572dd aad65ce 88c1db0 0f7e74b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import streamlit as st
from transformers import pipeline
from PIL import Image
from datasets import load_dataset, Image, list_datasets
from PIL import Image
MODELS = [
"google/vit-base-patch16-224", #Classifição geral
"nateraw/vit-age-classifier" #Classifição de idade
]
DATASETS = [
"Nunt/testedata",
"Nunt/backup_leonardo_2024-02-01"
]
MAX_N_LABELS = 5
SPLIT_TO_CLASSIFY = 'pasta'
COLS = st.columns([0.75, 0.25])
SCROLLABLE_TEXT = COLS[1].text_area("Conteúdo da segunda coluna", height=500)
def classify_one_image(classifier_model, dataset_to_classify):
#image_object = dataset[SPLIT_TO_CLASSIFY][i]["image"]
#st.image(image_object, caption="Uploaded Image", width=300)
#for i in range(len(dataset_to_classify)):
#for image in dataset_to_classify:
#image_object = dataset[SPLIT_TO_CLASSIFY][i]["image"]
#st.image(image_object, caption="Uploaded Image", width=300)
#st.write(f"Image classification: ", image['file'])
# image_path = image['file']
# img = Image.open(image_path)
# st.image(img, caption="Original image", use_column_width=True)
# results = classifier(image_path, top_k=MAX_N_LABELS)
# st.write(results)
# st.write("----")
return "done"
def classify_full_dataset(shosen_dataset_name, chosen_model_name):
image_count = 0
#dataset
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
with SCROLLABLE_TEXT:
#Image teste load
image_object = dataset['pasta'][0]["image"]
st.image(image_object, caption="Uploaded Image", width=300)
#st.write("### FLAG 3")
#modle instance
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
#COLS[1].write("### FLAG 4")
#classification
classification_result = classifier_pipeline(image_object)
SCROLLABLE_TEXT.write(classification_result)
#COLS[1].write("### FLAG 5")
#classification_array.append(classification_result)
#save classification
image_count += 1
SCROLLABLE_TEXT.write("Image count")
SCROLLABLE_TEXT.write(image_count)
return image_count
def make_template():
tile = CONTAINER_TOP.title(":balloon:")
tile.title(":balloon:")
with CONTAINER_FULL:
CONTAINER_TOP.title("titulo de teste dentro do container CONTAINER_TOP")
with CONTAINER_BODY:
#COL1, COL2 = st.columns([3, 1])
with COLS[1]:
CONTAINER_LOOP.write("### OUTPUT")
def main():
COLS[0].write("# Bulk Image Classification App")
#with CONTAINER_BODY:
with COLS[0]:
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
st.write("Soon we will have a dataset template")
#Model
chosen_model_name = COLS[0].selectbox("Select the model to use", MODELS, index=0)
if chosen_model_name is not None:
COLS[0].write("You selected")
COLS[0].write(chosen_model_name)
#Dataset
shosen_dataset_name = COLS[0].selectbox("Select the dataset to use", DATASETS, index=0)
if shosen_dataset_name is not None:
COLS[0].write("You selected")
COLS[0].write(shosen_dataset_name)
#click to classify
#image_object = dataset['pasta'][0]
if chosen_model_name is not None and shosen_dataset_name is not None:
if COLS[0].button("Classify images"):
#classification_array =[]
classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name)
COLS[0].write("Classification result {classification_result}")
COLS[0].write(classification_result)
#classification_array.append(classification_result)
#st.write("# FLAG 6")
#st.write(classification_array)
if __name__ == "__main__":
main() |