Spaces:
Sleeping
Sleeping
created template
Browse files
app.py
CHANGED
@@ -14,10 +14,14 @@ DATASETS = [
|
|
14 |
]
|
15 |
MAX_N_LABELS = 5
|
16 |
SPLIT_TO_CLASSIFY = 'pasta'
|
17 |
-
COL1, COL2 = st.columns([3, 1])
|
18 |
-
CONTAINER_TOP = st.container()
|
19 |
-
CONTAINER_BODY = st.container()
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
|
@@ -55,7 +59,7 @@ def classify_full_dataset(shosen_dataset_name, chosen_model_name):
|
|
55 |
|
56 |
#dataset
|
57 |
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
|
58 |
-
with
|
59 |
#Image teste load
|
60 |
image_object = dataset['pasta'][0]["image"]
|
61 |
st.image(image_object, caption="Uploaded Image", width=300)
|
@@ -63,35 +67,41 @@ def classify_full_dataset(shosen_dataset_name, chosen_model_name):
|
|
63 |
|
64 |
#modle instance
|
65 |
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
|
66 |
-
|
67 |
|
68 |
#classification
|
69 |
classification_result = classifier_pipeline(image_object)
|
70 |
-
|
71 |
-
|
72 |
#classification_array.append(classification_result)
|
73 |
|
74 |
#save classification
|
75 |
|
76 |
image_count += 1
|
|
|
77 |
|
78 |
return image_count
|
79 |
|
|
|
80 |
def make_template():
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
def main():
|
86 |
|
87 |
make_template()
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
#CONTAINER_TOP.title("Bulk Image Classification DEMO")
|
92 |
-
|
93 |
|
94 |
-
# Restart or reset your app
|
95 |
# if st.button("Restart"):
|
96 |
# # Code to restart or reset your app goes here
|
97 |
# import subprocess
|
@@ -103,29 +113,27 @@ def main():
|
|
103 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
104 |
st.write("Soon we will have a dataset template")
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
#st.write("# FLAG 6")
|
128 |
-
#st.write(classification_array)
|
129 |
|
130 |
if __name__ == "__main__":
|
131 |
main()
|
|
|
14 |
]
|
15 |
MAX_N_LABELS = 5
|
16 |
SPLIT_TO_CLASSIFY = 'pasta'
|
|
|
|
|
|
|
17 |
|
18 |
+
# COL1, COL2 = st.columns([3, 1])
|
19 |
+
# CONTAINER_TOP = st.container()
|
20 |
+
# CONTAINER_BODY = st.container()
|
21 |
+
# CONTAINER_FULL = st.container()
|
22 |
+
# CONTAINER_LOOP = st.container()
|
23 |
+
COL1, COL2
|
24 |
+
CONTAINER_TOP, CONTAINER_BODY, CONTAINER_FULL, CONTAINER_LOOP
|
25 |
|
26 |
|
27 |
|
|
|
59 |
|
60 |
#dataset
|
61 |
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
|
62 |
+
with CONTAINER_LOOP:
|
63 |
#Image teste load
|
64 |
image_object = dataset['pasta'][0]["image"]
|
65 |
st.image(image_object, caption="Uploaded Image", width=300)
|
|
|
67 |
|
68 |
#modle instance
|
69 |
classifier_pipeline = pipeline('image-classification', model=chosen_model_name)
|
70 |
+
CONTAINER_LOOP.write("### FLAG 4")
|
71 |
|
72 |
#classification
|
73 |
classification_result = classifier_pipeline(image_object)
|
74 |
+
CONTAINER_LOOP.write(classification_result)
|
75 |
+
CONTAINER_LOOP.write("### FLAG 5")
|
76 |
#classification_array.append(classification_result)
|
77 |
|
78 |
#save classification
|
79 |
|
80 |
image_count += 1
|
81 |
+
CONTAINER_LOOP.write(f"Image count: {image_count}")
|
82 |
|
83 |
return image_count
|
84 |
|
85 |
+
|
86 |
def make_template():
|
87 |
+
CONTAINER_FULL = st.container()
|
88 |
+
with CONTAINER_FULL:
|
89 |
+
CONTAINER_TOP = st.container()
|
90 |
+
CONTAINER_BODY = st.container()
|
91 |
+
with CONTAINER_BODY:
|
92 |
+
COL1, COL2 = st.columns([3, 1])
|
93 |
+
with COL2:
|
94 |
+
CONTAINER_LOOP = st.container()
|
95 |
+
|
96 |
|
97 |
def main():
|
98 |
|
99 |
make_template()
|
100 |
|
101 |
+
CONTAINER_TOP.title("Bulk Image Classification DEMO")
|
102 |
+
|
|
|
|
|
103 |
|
104 |
+
# TODO Restart or reset your app
|
105 |
# if st.button("Restart"):
|
106 |
# # Code to restart or reset your app goes here
|
107 |
# import subprocess
|
|
|
113 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
114 |
st.write("Soon we will have a dataset template")
|
115 |
|
116 |
+
#Model
|
117 |
+
chosen_model_name = st.selectbox("Select the model to use", MODELS, index=0)
|
118 |
+
if chosen_model_name is not None:
|
119 |
+
COL1.st.write("You selected", chosen_model_name)
|
120 |
+
|
121 |
+
#Dataset
|
122 |
+
shosen_dataset_name = st.selectbox("Select the dataset to use", DATASETS, index=0)
|
123 |
+
if shosen_dataset_name is not None:
|
124 |
+
COL1.st.write("You selected", shosen_dataset_name)
|
125 |
+
|
126 |
+
#click to classify
|
127 |
+
#image_object = dataset['pasta'][0]
|
128 |
+
if chosen_model_name is not None and shosen_dataset_name is not None:
|
129 |
+
if COL1.button("Classify images"):
|
130 |
+
|
131 |
+
#classification_array =[]
|
132 |
+
classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name)
|
133 |
+
CONTAINER_LOOP.write(f"Classification result: {classification_result}")
|
134 |
+
#classification_array.append(classification_result)
|
135 |
+
#st.write("# FLAG 6")
|
136 |
+
#st.write(classification_array)
|
|
|
|
|
137 |
|
138 |
if __name__ == "__main__":
|
139 |
main()
|