Spaces:
Build error
Build error
1st version is ready to teste
Browse files
app.py
CHANGED
|
@@ -5,28 +5,66 @@ from datasets import load_dataset, Image, list_datasets
|
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
MODELS = [
|
|
|
|
| 8 |
"google/vit-base-patch16-224", #Classifição geral
|
| 9 |
"nateraw/vit-age-classifier" #Classifição de idade
|
| 10 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
MAX_N_LABELS = 5
|
| 12 |
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def main():
|
| 16 |
st.title("Bulk Image Classification")
|
| 17 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
| 18 |
st.write("Soon we will have a dataset template")
|
| 19 |
st.write("**Soon we will have dataset selector**")
|
| 20 |
-
st.text("Select a model to use:")
|
| 21 |
-
st.get_option("model", MODELS)
|
| 22 |
-
dataset = load_dataset("Nunt/testedata","testedata_readme")
|
| 23 |
-
st.markdown("The models available are:")
|
| 24 |
-
st.markdown("**PUT IT HERE**")
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
dataset = load_dataset("Nunt/testedata","testedata_readme")
|
| 28 |
-
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
if __name__ == "__main__":
|
|
|
|
| 5 |
from PIL import Image
|
| 6 |
|
| 7 |
MODELS = [
|
| 8 |
+
"",
|
| 9 |
"google/vit-base-patch16-224", #Classifição geral
|
| 10 |
"nateraw/vit-age-classifier" #Classifição de idade
|
| 11 |
]
|
| 12 |
+
DATASETS = [
|
| 13 |
+
"",
|
| 14 |
+
"NunT/vit-base-patch16-224", #Classifição geral
|
| 15 |
+
"NunT/vit-age-classifier" #Classifição de idade
|
| 16 |
+
]
|
| 17 |
MAX_N_LABELS = 5
|
| 18 |
|
| 19 |
|
| 20 |
+
def classify_images(classifier_model, dataset_to_classify):
|
| 21 |
+
|
| 22 |
+
for image in dataset:
|
| 23 |
+
st("Image classification: ", image['file'])
|
| 24 |
+
'''
|
| 25 |
+
image_path = image['file']
|
| 26 |
+
img = Image.open(image_path)
|
| 27 |
+
st.image(img, caption="Original image", use_column_width=True)
|
| 28 |
+
results = classifier(image_path, top_k=MAX_N_LABELS)
|
| 29 |
+
st.write(results)
|
| 30 |
+
st.write("----")
|
| 31 |
+
'''
|
| 32 |
+
|
| 33 |
+
|
| 34 |
|
| 35 |
def main():
|
| 36 |
st.title("Bulk Image Classification")
|
| 37 |
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
|
| 38 |
st.write("Soon we will have a dataset template")
|
| 39 |
st.write("**Soon we will have dataset selector**")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
|
| 42 |
+
'''
|
| 43 |
+
Model
|
| 44 |
+
'''
|
| 45 |
+
shosen_model_name = st.selectbox("Select the model to use", MODELS)
|
| 46 |
+
if shosen_model is not None:
|
| 47 |
+
st.write("You selected", shosen_model_name)
|
| 48 |
+
|
| 49 |
+
'''
|
| 50 |
+
Dataset
|
| 51 |
+
'''
|
| 52 |
+
shosen_dataset_name =st.radio("Select the model to use", MODELS)
|
| 53 |
+
if shosen_dataset is not None:
|
| 54 |
+
st.write("You selected", shosen_dataset_name)
|
| 55 |
+
image_object = dataset['pasta'][0]["image"]
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
if shosen_model is not None and shosen_dataset is not None:
|
| 61 |
+
st.image(shosen_dataset[0], caption="Uploaded Image", use_column_width=True)
|
| 62 |
+
if st.button("Classify images"):
|
| 63 |
+
dataset = load_dataset("Nunt/testedata","testedata_readme")
|
| 64 |
+
classifier = pipeline('image-classification', model=model_name, device=0)
|
| 65 |
+
classify_images(classifier, dataset)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
|
| 69 |
|
| 70 |
if __name__ == "__main__":
|