Spaces:
Running
Running
File size: 4,777 Bytes
979bfc3 4d3f40f 979bfc3 5331238 979bfc3 5331238 cd320c7 979bfc3 cd320c7 5331238 979bfc3 3028bfb cd320c7 3028bfb cd320c7 979bfc3 5331238 979bfc3 124ac36 979bfc3 5331238 979bfc3 5331238 979bfc3 5331238 124ac36 979bfc3 5331238 124ac36 979bfc3 124ac36 979bfc3 124ac36 979bfc3 124ac36 979bfc3 124ac36 cd320c7 979bfc3 4d3f40f 3028bfb cd320c7 124ac36 3028bfb cd320c7 5331238 cd320c7 124ac36 cd320c7 4d3f40f cd320c7 5331238 124ac36 cd320c7 4d3f40f 979bfc3 124ac36 979bfc3 5331238 979bfc3 5331238 979bfc3 4d3f40f 979bfc3 5331238 124ac36 979bfc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import asyncio
import logging
import torch
import gradio as gr
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List, Dict
from functools import lru_cache
import uvicorn
import numpy as np
class EmbeddingRequest(BaseModel):
input: str
model: str = "jinaai/jina-embeddings-v3"
class EmbeddingResponse(BaseModel):
status: str
embeddings: List[List[float]]
class EmbeddingService:
def __init__(self):
self.model_name = "jinaai/jina-embeddings-v3"
self.max_length = 512
self.device = torch.device("cpu")
self.model = None
self.tokenizer = None
self.setup_logging()
# CPU优化
torch.set_num_threads(4)
def setup_logging(self):
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
self.logger = logging.getLogger(__name__)
async def initialize(self):
try:
from transformers import AutoTokenizer, AutoModel
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True
)
self.model = AutoModel.from_pretrained(
self.model_name,
trust_remote_code=True
).to(self.device)
self.model.eval()
torch.set_grad_enabled(False)
self.logger.info(f"模型加载成功,使用设备: {self.device}")
except Exception as e:
self.logger.error(f"模型初始化失败: {str(e)}")
raise
async def _generate_embedding_internal(self, text: str) -> List[float]:
"""内部嵌入生成函数"""
if not text.strip():
raise ValueError("输入文本不能为空")
inputs = self.tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=self.max_length,
padding=True
)
with torch.no_grad():
outputs = self.model(**inputs).last_hidden_state.mean(dim=1)
return outputs.numpy().tolist()[0]
@lru_cache(maxsize=1000)
def get_cached_embedding(self, text: str) -> List[float]:
"""缓存包装函数"""
loop = asyncio.new_event_loop()
try:
return loop.run_until_complete(self._generate_embedding_internal(text))
finally:
loop.close()
# 初始化服务
embedding_service = EmbeddingService()
app = FastAPI(
title="Jina Embeddings API",
description="Text embedding generation service using jina-embeddings-v3",
version="1.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/api/v1/chat/completions", response_model=EmbeddingResponse)
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
async def generate_embeddings(request: EmbeddingRequest):
try:
embedding = embedding_service.get_cached_embedding(request.input)
return EmbeddingResponse(
status="success",
embeddings=[embedding]
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {
"status": "active",
"model": embedding_service.model_name,
"device": str(embedding_service.device)
}
# Gradio界面
def gradio_interface(text: str) -> Dict:
try:
embedding = embedding_service.get_cached_embedding(text)
return {
"status": "success",
"embeddings": [embedding]
}
except Exception as e:
return {
"status": "error",
"message": str(e)
}
iface = gr.Interface(
fn=gradio_interface,
inputs=gr.Textbox(lines=3, label="输入文本"),
outputs=gr.JSON(label="嵌入向量结果"),
title="Jina Embeddings V3",
description="使用jina-embeddings-v3模型生成文本嵌入向量",
examples=[["这是一个测试句子。"]]
)
@app.on_event("startup")
async def startup_event():
await embedding_service.initialize()
if __name__ == "__main__":
asyncio.run(embedding_service.initialize())
gr.mount_gradio_app(app, iface, path="/ui")
uvicorn.run(
app,
host="0.0.0.0",
port=7860,
workers=1
)
|