Spaces:
Sleeping
Sleeping
sanbo
commited on
Commit
·
3028bfb
1
Parent(s):
e201fa0
update sth. at 2025-01-16 22:04:20
Browse files
README.md
CHANGED
@@ -11,3 +11,23 @@ short_description: jina-embeddings-v3
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
You can generate embeddings by sending a POST request to one of the following endpoints:
|
18 |
+
|
19 |
+
- `/generate_embeddings`
|
20 |
+
- `/api/v1/embeddings`
|
21 |
+
- `/hf/v1/embeddings`
|
22 |
+
- `/api/v1/chat/completions`
|
23 |
+
- `/hf/v1/chat/completions`
|
24 |
+
|
25 |
+
Example request using `curl`:
|
26 |
+
|
27 |
+
```sh
|
28 |
+
curl -X POST https://sanbo1200-jina-embeddings-v3.hf.space/api/v1/embeddings \
|
29 |
+
-H "Content-Type: application/json" \
|
30 |
+
-d '{
|
31 |
+
"input": "Your text string goes here",
|
32 |
+
"model": "jinaai/jina-embeddings-v3"
|
33 |
+
}'
|
app.py
CHANGED
@@ -5,10 +5,14 @@ import torch
|
|
5 |
from typing import List, Dict
|
6 |
import uvicorn
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
|
|
9 |
class EmbeddingResponse(BaseModel):
|
10 |
status: str
|
11 |
-
embeddings: List[
|
12 |
|
13 |
# 创建FastAPI应用
|
14 |
app = FastAPI(
|
@@ -22,41 +26,33 @@ model_name = "jinaai/jina-embeddings-v3"
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
23 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
26 |
try:
|
27 |
# 使用分词器处理输入文本
|
28 |
-
inputs = tokenizer(
|
29 |
-
|
30 |
-
|
31 |
with torch.no_grad():
|
32 |
embeddings = model(**inputs).last_hidden_state.mean(dim=1)
|
33 |
-
|
34 |
-
|
35 |
status="success",
|
36 |
embeddings=embeddings.numpy().tolist()
|
37 |
)
|
38 |
except Exception as e:
|
39 |
raise HTTPException(status_code=500, detail=str(e))
|
40 |
|
41 |
-
@app.post("/api/v1/embeddings")
|
42 |
-
@app.post("/hf/v1/embeddings")
|
43 |
-
async def embedding(request: Request):
|
44 |
-
try:
|
45 |
-
data = await request.json()
|
46 |
-
text = data.get('input', '')
|
47 |
-
if not text:
|
48 |
-
raise HTTPException(status_code=400, detail="Input text is missing")
|
49 |
-
|
50 |
-
return await generate_embeddings(text)
|
51 |
-
except Exception as e:
|
52 |
-
raise HTTPException(status_code=500, detail=str(e))
|
53 |
-
|
54 |
@app.get("/")
|
55 |
async def root():
|
56 |
return {
|
57 |
"status": "active",
|
58 |
"model": model_name,
|
59 |
-
"usage": "Send POST request to /api/v1/embeddings"
|
60 |
}
|
61 |
|
62 |
if __name__ == "__main__":
|
|
|
5 |
from typing import List, Dict
|
6 |
import uvicorn
|
7 |
|
8 |
+
# 定义请求和响应模型
|
9 |
+
class EmbeddingRequest(BaseModel):
|
10 |
+
input: str
|
11 |
+
model: str = "jinaai/jina-embeddings-v3"
|
12 |
+
|
13 |
class EmbeddingResponse(BaseModel):
|
14 |
status: str
|
15 |
+
embeddings: List[List[float]]
|
16 |
|
17 |
# 创建FastAPI应用
|
18 |
app = FastAPI(
|
|
|
26 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
27 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
28 |
|
29 |
+
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
|
30 |
+
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
|
31 |
+
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
|
32 |
+
@app.post("/api/v1/chat/completions", response_model=EmbeddingResponse)
|
33 |
+
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
|
34 |
+
async def generate_embeddings(request: EmbeddingRequest):
|
35 |
try:
|
36 |
# 使用分词器处理输入文本
|
37 |
+
inputs = tokenizer(request.input, return_tensors="pt", truncation=True, max_length=512)
|
38 |
+
|
39 |
+
# 生成嵌入
|
40 |
with torch.no_grad():
|
41 |
embeddings = model(**inputs).last_hidden_state.mean(dim=1)
|
42 |
+
|
43 |
+
return EmbeddingResponse(
|
44 |
status="success",
|
45 |
embeddings=embeddings.numpy().tolist()
|
46 |
)
|
47 |
except Exception as e:
|
48 |
raise HTTPException(status_code=500, detail=str(e))
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
@app.get("/")
|
51 |
async def root():
|
52 |
return {
|
53 |
"status": "active",
|
54 |
"model": model_name,
|
55 |
+
"usage": "Send POST request to /generate_embeddings or /api/v1/embeddings or /hf/v1/embeddings"
|
56 |
}
|
57 |
|
58 |
if __name__ == "__main__":
|