Spaces:
Sleeping
Sleeping
sanbo
commited on
Commit
·
3028bfb
1
Parent(s):
e201fa0
update sth. at 2025-01-16 22:04:20
Browse files
README.md
CHANGED
|
@@ -11,3 +11,23 @@ short_description: jina-embeddings-v3
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 14 |
+
|
| 15 |
+
## Usage
|
| 16 |
+
|
| 17 |
+
You can generate embeddings by sending a POST request to one of the following endpoints:
|
| 18 |
+
|
| 19 |
+
- `/generate_embeddings`
|
| 20 |
+
- `/api/v1/embeddings`
|
| 21 |
+
- `/hf/v1/embeddings`
|
| 22 |
+
- `/api/v1/chat/completions`
|
| 23 |
+
- `/hf/v1/chat/completions`
|
| 24 |
+
|
| 25 |
+
Example request using `curl`:
|
| 26 |
+
|
| 27 |
+
```sh
|
| 28 |
+
curl -X POST https://sanbo1200-jina-embeddings-v3.hf.space/api/v1/embeddings \
|
| 29 |
+
-H "Content-Type: application/json" \
|
| 30 |
+
-d '{
|
| 31 |
+
"input": "Your text string goes here",
|
| 32 |
+
"model": "jinaai/jina-embeddings-v3"
|
| 33 |
+
}'
|
app.py
CHANGED
|
@@ -5,10 +5,14 @@ import torch
|
|
| 5 |
from typing import List, Dict
|
| 6 |
import uvicorn
|
| 7 |
|
| 8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
class EmbeddingResponse(BaseModel):
|
| 10 |
status: str
|
| 11 |
-
embeddings: List[
|
| 12 |
|
| 13 |
# 创建FastAPI应用
|
| 14 |
app = FastAPI(
|
|
@@ -22,41 +26,33 @@ model_name = "jinaai/jina-embeddings-v3"
|
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 23 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
try:
|
| 27 |
# 使用分词器处理输入文本
|
| 28 |
-
inputs = tokenizer(
|
| 29 |
-
|
| 30 |
-
|
| 31 |
with torch.no_grad():
|
| 32 |
embeddings = model(**inputs).last_hidden_state.mean(dim=1)
|
| 33 |
-
|
| 34 |
-
|
| 35 |
status="success",
|
| 36 |
embeddings=embeddings.numpy().tolist()
|
| 37 |
)
|
| 38 |
except Exception as e:
|
| 39 |
raise HTTPException(status_code=500, detail=str(e))
|
| 40 |
|
| 41 |
-
@app.post("/api/v1/embeddings")
|
| 42 |
-
@app.post("/hf/v1/embeddings")
|
| 43 |
-
async def embedding(request: Request):
|
| 44 |
-
try:
|
| 45 |
-
data = await request.json()
|
| 46 |
-
text = data.get('input', '')
|
| 47 |
-
if not text:
|
| 48 |
-
raise HTTPException(status_code=400, detail="Input text is missing")
|
| 49 |
-
|
| 50 |
-
return await generate_embeddings(text)
|
| 51 |
-
except Exception as e:
|
| 52 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 53 |
-
|
| 54 |
@app.get("/")
|
| 55 |
async def root():
|
| 56 |
return {
|
| 57 |
"status": "active",
|
| 58 |
"model": model_name,
|
| 59 |
-
"usage": "Send POST request to /api/v1/embeddings"
|
| 60 |
}
|
| 61 |
|
| 62 |
if __name__ == "__main__":
|
|
|
|
| 5 |
from typing import List, Dict
|
| 6 |
import uvicorn
|
| 7 |
|
| 8 |
+
# 定义请求和响应模型
|
| 9 |
+
class EmbeddingRequest(BaseModel):
|
| 10 |
+
input: str
|
| 11 |
+
model: str = "jinaai/jina-embeddings-v3"
|
| 12 |
+
|
| 13 |
class EmbeddingResponse(BaseModel):
|
| 14 |
status: str
|
| 15 |
+
embeddings: List[List[float]]
|
| 16 |
|
| 17 |
# 创建FastAPI应用
|
| 18 |
app = FastAPI(
|
|
|
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 27 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 28 |
|
| 29 |
+
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
|
| 30 |
+
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
|
| 31 |
+
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
|
| 32 |
+
@app.post("/api/v1/chat/completions", response_model=EmbeddingResponse)
|
| 33 |
+
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
|
| 34 |
+
async def generate_embeddings(request: EmbeddingRequest):
|
| 35 |
try:
|
| 36 |
# 使用分词器处理输入文本
|
| 37 |
+
inputs = tokenizer(request.input, return_tensors="pt", truncation=True, max_length=512)
|
| 38 |
+
|
| 39 |
+
# 生成嵌入
|
| 40 |
with torch.no_grad():
|
| 41 |
embeddings = model(**inputs).last_hidden_state.mean(dim=1)
|
| 42 |
+
|
| 43 |
+
return EmbeddingResponse(
|
| 44 |
status="success",
|
| 45 |
embeddings=embeddings.numpy().tolist()
|
| 46 |
)
|
| 47 |
except Exception as e:
|
| 48 |
raise HTTPException(status_code=500, detail=str(e))
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
@app.get("/")
|
| 51 |
async def root():
|
| 52 |
return {
|
| 53 |
"status": "active",
|
| 54 |
"model": model_name,
|
| 55 |
+
"usage": "Send POST request to /generate_embeddings or /api/v1/embeddings or /hf/v1/embeddings"
|
| 56 |
}
|
| 57 |
|
| 58 |
if __name__ == "__main__":
|