Spaces:
Sleeping
Sleeping
sanbo
commited on
Commit
·
cd320c7
1
Parent(s):
2c68d90
update sth. at 2025-01-16 21:48:33
Browse files- app.py +45 -23
- requirements.txt +4 -1
app.py
CHANGED
|
@@ -1,32 +1,54 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModel
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 8 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 9 |
|
| 10 |
-
|
| 11 |
-
def generate_embeddings(
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
)
|
| 29 |
|
| 30 |
-
# 4. 启动Gradio应用
|
| 31 |
if __name__ == "__main__":
|
| 32 |
-
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
from transformers import AutoTokenizer, AutoModel
|
| 4 |
import torch
|
| 5 |
+
from typing import List, Dict
|
| 6 |
+
import uvicorn
|
| 7 |
|
| 8 |
+
# 定义请求和响应模型
|
| 9 |
+
class TextRequest(BaseModel):
|
| 10 |
+
text: str
|
| 11 |
+
|
| 12 |
+
class EmbeddingResponse(BaseModel):
|
| 13 |
+
status: str
|
| 14 |
+
embeddings: List[List[float]]
|
| 15 |
+
|
| 16 |
+
# 创建FastAPI应用
|
| 17 |
+
app = FastAPI(
|
| 18 |
+
title="Jina Embeddings API",
|
| 19 |
+
description="Text embedding generation service using jina-embeddings-v3",
|
| 20 |
+
version="1.0.0"
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# 加载模型和分词器
|
| 24 |
+
model_name = "jinaai/jina-embeddings-v3"
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 26 |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 27 |
|
| 28 |
+
@app.post("/generate_embeddings", response_model=EmbeddingResponse)
|
| 29 |
+
async def generate_embeddings(request: TextRequest):
|
| 30 |
+
try:
|
| 31 |
+
# 使用分词器处理输入文本
|
| 32 |
+
inputs = tokenizer(request.text, return_tensors="pt", truncation=True, max_length=512)
|
| 33 |
+
|
| 34 |
+
# 生成嵌入
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
embeddings = model(**inputs).last_hidden_state.mean(dim=1)
|
| 37 |
+
|
| 38 |
+
return EmbeddingResponse(
|
| 39 |
+
status="success",
|
| 40 |
+
embeddings=embeddings.numpy().tolist()
|
| 41 |
+
)
|
| 42 |
+
except Exception as e:
|
| 43 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 44 |
|
| 45 |
+
@app.get("/")
|
| 46 |
+
async def root():
|
| 47 |
+
return {
|
| 48 |
+
"status": "active",
|
| 49 |
+
"model": model_name,
|
| 50 |
+
"usage": "Send POST request to /generate_embeddings"
|
| 51 |
+
}
|
|
|
|
| 52 |
|
|
|
|
| 53 |
if __name__ == "__main__":
|
| 54 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
CHANGED
|
@@ -1,3 +1,6 @@
|
|
| 1 |
transformers
|
| 2 |
torch
|
| 3 |
-
einops
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
transformers
|
| 2 |
torch
|
| 3 |
+
einops
|
| 4 |
+
fastapi
|
| 5 |
+
uvicorn
|
| 6 |
+
pydantic
|