chat / app.py
saikub's picture
Update app.py
b73a01d verified
raw
history blame
6.06 kB
import streamlit as st
from openai import OpenAI
import os
import numpy as np
from dotenv import load_dotenv
import openai
# Load environment variables
load_dotenv()
# Initialize the OpenAI client for OpenAI models
openai.api_key = os.getenv("OPENAI_API_KEY")
# Hugging Face API client setup (if needed)
HF_API_KEY = os.getenv("HF_API_KEY")
huggingface_url = "https://api-inference.huggingface.co/models/"
# Create supported models dictionary
model_links = {
"ChatGPT": "openai/gpt-4",
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
# Add more models as needed
}
# Define functions to interact with OpenAI and Hugging Face
def query_openai(prompt, temperature):
"""Query OpenAI's GPT model."""
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
)
return response.choices[0].message['content']
def query_huggingface(prompt, model, temperature):
"""Query Hugging Face's API."""
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
payload = {
"inputs": prompt,
"parameters": {"temperature": temperature, "return_full_text": False},
}
response = requests.post(f"{huggingface_url}{model}", headers=headers, json=payload)
return response.json()[0]['generated_text']
# Function to reset conversation
def reset_conversation():
st.session_state.messages = []
st.session_state.responses = []
st.session_state.current_model = None
# Sidebar setup
st.sidebar.title("ChatBot Configuration")
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.5)
# Reset chat button
st.sidebar.button('Reset Chat', on_click=reset_conversation)
# Initialize session state variables
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'responses' not in st.session_state:
st.session_state.responses = []
if 'current_model' not in st.session_state:
st.session_state.current_model = selected_model
# Check if the model was changed
if st.session_state.current_model != selected_model:
reset_conversation()
st.session_state.current_model = selected_model
# Chat Interface
st.title(f"Chat with {selected_model}")
# Display previous chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("Ask me anything..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant"):
if selected_model == "ChatGPT":
response = query_openai(prompt, temperature)
else:
response = query_huggingface(prompt, model_links[selected_model], temperature)
st.markdown(response)
st.session_state.responses.append(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
#####################################
# import gradio as gr
# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch()
########################################
# import streamlit as st
# from transformers import AutoTokenizer, AutoModelForCausalLM
# # Load model directly
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# # Initialize chat history
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = []
# # Display chat history
# for chat in st.session_state.chat_history:
# st.write(f"User: {chat['user']}")
# st.write(f"Response: {chat['response']}")
# # Get user input
# user_input = st.text_input("Enter your message:")
# # Generate response
# if st.button("Send"):
# inputs = tokenizer(user_input, return_tensors="pt")
# outputs = model.generate(**inputs)
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# st.session_state.chat_history.append({"user": user_input, "response": response})
# st.write(f"Response: {response}")