Spaces:
Running
Running
File size: 6,062 Bytes
b73a01d 8749d7d b73a01d 985f30b b73a01d 985f30b b73a01d 985f30b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import streamlit as st
from openai import OpenAI
import os
import numpy as np
from dotenv import load_dotenv
import openai
# Load environment variables
load_dotenv()
# Initialize the OpenAI client for OpenAI models
openai.api_key = os.getenv("OPENAI_API_KEY")
# Hugging Face API client setup (if needed)
HF_API_KEY = os.getenv("HF_API_KEY")
huggingface_url = "https://api-inference.huggingface.co/models/"
# Create supported models dictionary
model_links = {
"ChatGPT": "openai/gpt-4",
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
# Add more models as needed
}
# Define functions to interact with OpenAI and Hugging Face
def query_openai(prompt, temperature):
"""Query OpenAI's GPT model."""
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}],
temperature=temperature,
)
return response.choices[0].message['content']
def query_huggingface(prompt, model, temperature):
"""Query Hugging Face's API."""
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
payload = {
"inputs": prompt,
"parameters": {"temperature": temperature, "return_full_text": False},
}
response = requests.post(f"{huggingface_url}{model}", headers=headers, json=payload)
return response.json()[0]['generated_text']
# Function to reset conversation
def reset_conversation():
st.session_state.messages = []
st.session_state.responses = []
st.session_state.current_model = None
# Sidebar setup
st.sidebar.title("ChatBot Configuration")
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.5)
# Reset chat button
st.sidebar.button('Reset Chat', on_click=reset_conversation)
# Initialize session state variables
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'responses' not in st.session_state:
st.session_state.responses = []
if 'current_model' not in st.session_state:
st.session_state.current_model = selected_model
# Check if the model was changed
if st.session_state.current_model != selected_model:
reset_conversation()
st.session_state.current_model = selected_model
# Chat Interface
st.title(f"Chat with {selected_model}")
# Display previous chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("Ask me anything..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant"):
if selected_model == "ChatGPT":
response = query_openai(prompt, temperature)
else:
response = query_huggingface(prompt, model_links[selected_model], temperature)
st.markdown(response)
st.session_state.responses.append(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
#####################################
# import gradio as gr
# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch()
########################################
# import streamlit as st
# from transformers import AutoTokenizer, AutoModelForCausalLM
# # Load model directly
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# # Initialize chat history
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = []
# # Display chat history
# for chat in st.session_state.chat_history:
# st.write(f"User: {chat['user']}")
# st.write(f"Response: {chat['response']}")
# # Get user input
# user_input = st.text_input("Enter your message:")
# # Generate response
# if st.button("Send"):
# inputs = tokenizer(user_input, return_tensors="pt")
# outputs = model.generate(**inputs)
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# st.session_state.chat_history.append({"user": user_input, "response": response})
# st.write(f"Response: {response}") |