File size: 6,062 Bytes
b73a01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8749d7d
b73a01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985f30b
 
b73a01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985f30b
 
 
b73a01d
985f30b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import streamlit as st
from openai import OpenAI
import os
import numpy as np
from dotenv import load_dotenv
import openai

# Load environment variables
load_dotenv()

# Initialize the OpenAI client for OpenAI models
openai.api_key = os.getenv("OPENAI_API_KEY")

# Hugging Face API client setup (if needed)
HF_API_KEY = os.getenv("HF_API_KEY")
huggingface_url = "https://api-inference.huggingface.co/models/"

# Create supported models dictionary
model_links = {
    "ChatGPT": "openai/gpt-4",
    "Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
    "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
    # Add more models as needed
}

# Define functions to interact with OpenAI and Hugging Face
def query_openai(prompt, temperature):
    """Query OpenAI's GPT model."""
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[{"role": "user", "content": prompt}],
        temperature=temperature,
    )
    return response.choices[0].message['content']

def query_huggingface(prompt, model, temperature):
    """Query Hugging Face's API."""
    headers = {"Authorization": f"Bearer {HF_API_KEY}"}
    payload = {
        "inputs": prompt,
        "parameters": {"temperature": temperature, "return_full_text": False},
    }
    response = requests.post(f"{huggingface_url}{model}", headers=headers, json=payload)
    return response.json()[0]['generated_text']

# Function to reset conversation
def reset_conversation():
    st.session_state.messages = []
    st.session_state.responses = []
    st.session_state.current_model = None

# Sidebar setup
st.sidebar.title("ChatBot Configuration")
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.5)

# Reset chat button
st.sidebar.button('Reset Chat', on_click=reset_conversation)

# Initialize session state variables
if 'messages' not in st.session_state:
    st.session_state.messages = []
if 'responses' not in st.session_state:
    st.session_state.responses = []
if 'current_model' not in st.session_state:
    st.session_state.current_model = selected_model

# Check if the model was changed
if st.session_state.current_model != selected_model:
    reset_conversation()
    st.session_state.current_model = selected_model

# Chat Interface
st.title(f"Chat with {selected_model}")

# Display previous chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input("Ask me anything..."):
    st.session_state.messages.append({"role": "user", "content": prompt})

    with st.chat_message("assistant"):
        if selected_model == "ChatGPT":
            response = query_openai(prompt, temperature)
        else:
            response = query_huggingface(prompt, model_links[selected_model], temperature)
        st.markdown(response)

    st.session_state.responses.append(response)
    st.session_state.messages.append({"role": "assistant", "content": response})


# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()
#####################################
# import gradio as gr

# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch()
########################################
# import streamlit as st
# from transformers import AutoTokenizer, AutoModelForCausalLM

# # Load model directly
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")

# # Initialize chat history
# if "chat_history" not in st.session_state:
#     st.session_state.chat_history = []

# # Display chat history
# for chat in st.session_state.chat_history:
#     st.write(f"User: {chat['user']}")
#     st.write(f"Response: {chat['response']}")

# # Get user input
# user_input = st.text_input("Enter your message:")

# # Generate response
# if st.button("Send"):
#     inputs = tokenizer(user_input, return_tensors="pt")
#     outputs = model.generate(**inputs)
#     response = tokenizer.decode(outputs[0], skip_special_tokens=True)
#     st.session_state.chat_history.append({"user": user_input, "response": response})
#     st.write(f"Response: {response}")