import streamlit as st from openai import OpenAI import os import numpy as np from dotenv import load_dotenv import openai # Load environment variables load_dotenv() # Initialize the OpenAI client for OpenAI models openai.api_key = os.getenv("OPENAI_API_KEY") # Hugging Face API client setup (if needed) HF_API_KEY = os.getenv("HF_API_KEY") huggingface_url = "https://api-inference.huggingface.co/models/" # Create supported models dictionary model_links = { "ChatGPT": "openai/gpt-4", "Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct", "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1", # Add more models as needed } # Define functions to interact with OpenAI and Hugging Face def query_openai(prompt, temperature): """Query OpenAI's GPT model.""" response = openai.ChatCompletion.create( model="gpt-4", messages=[{"role": "user", "content": prompt}], temperature=temperature, ) return response.choices[0].message['content'] def query_huggingface(prompt, model, temperature): """Query Hugging Face's API.""" headers = {"Authorization": f"Bearer {HF_API_KEY}"} payload = { "inputs": prompt, "parameters": {"temperature": temperature, "return_full_text": False}, } response = requests.post(f"{huggingface_url}{model}", headers=headers, json=payload) return response.json()[0]['generated_text'] # Function to reset conversation def reset_conversation(): st.session_state.messages = [] st.session_state.responses = [] st.session_state.current_model = None # Sidebar setup st.sidebar.title("ChatBot Configuration") selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys())) temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.5) # Reset chat button st.sidebar.button('Reset Chat', on_click=reset_conversation) # Initialize session state variables if 'messages' not in st.session_state: st.session_state.messages = [] if 'responses' not in st.session_state: st.session_state.responses = [] if 'current_model' not in st.session_state: st.session_state.current_model = selected_model # Check if the model was changed if st.session_state.current_model != selected_model: reset_conversation() st.session_state.current_model = selected_model # Chat Interface st.title(f"Chat with {selected_model}") # Display previous chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input("Ask me anything..."): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("assistant"): if selected_model == "ChatGPT": response = query_openai(prompt, temperature) else: response = query_huggingface(prompt, model_links[selected_model], temperature) st.markdown(response) st.session_state.responses.append(response) st.session_state.messages.append({"role": "assistant", "content": response}) # import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() ##################################### # import gradio as gr # gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch() ######################################## # import streamlit as st # from transformers import AutoTokenizer, AutoModelForCausalLM # # Load model directly # tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") # model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") # # Initialize chat history # if "chat_history" not in st.session_state: # st.session_state.chat_history = [] # # Display chat history # for chat in st.session_state.chat_history: # st.write(f"User: {chat['user']}") # st.write(f"Response: {chat['response']}") # # Get user input # user_input = st.text_input("Enter your message:") # # Generate response # if st.button("Send"): # inputs = tokenizer(user_input, return_tensors="pt") # outputs = model.generate(**inputs) # response = tokenizer.decode(outputs[0], skip_special_tokens=True) # st.session_state.chat_history.append({"user": user_input, "response": response}) # st.write(f"Response: {response}")