chat / app.py
saikub's picture
Update app.py
2e796d1 verified
raw
history blame
5.75 kB
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Initialize the OpenAI client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get('API_KEY') # Replace with your token
)
# Define model links
model_links = {
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
# Add more models as needed
}
# Function to reset conversation
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
# Sidebar setup
models = [key for key in model_links.keys()]
selected_model = st.sidebar.selectbox("Select Model", models)
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
st.sidebar.button('Reset Chat', on_click=reset_conversation)
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).")
# Manage session state
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
st.session_state.prev_option = selected_model
reset_conversation()
# Model repository id
repo_id = model_links[selected_model]
# Main chat interface
st.subheader(f'TypeGPT.net - {selected_model}')
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant"):
try:
stream = client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,
stream=True,
max_tokens=3000,
)
response = st.write_stream(stream)
except Exception as e:
response = "πŸ˜΅β€πŸ’« Looks like something went wrong! Please try again later."
st.write(response)
st.session_state.messages.append({"role": "assistant", "content": response})
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
#####################################
# import gradio as gr
# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch()
########################################
# import streamlit as st
# from transformers import AutoTokenizer, AutoModelForCausalLM
# # Load model directly
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# # Initialize chat history
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = []
# # Display chat history
# for chat in st.session_state.chat_history:
# st.write(f"User: {chat['user']}")
# st.write(f"Response: {chat['response']}")
# # Get user input
# user_input = st.text_input("Enter your message:")
# # Generate response
# if st.button("Send"):
# inputs = tokenizer(user_input, return_tensors="pt")
# outputs = model.generate(**inputs)
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# st.session_state.chat_history.append({"user": user_input, "response": response})
# st.write(f"Response: {response}")