import numpy as np import streamlit as st from openai import OpenAI import os from dotenv import load_dotenv # Load environment variables load_dotenv() # Initialize the OpenAI client client = OpenAI( base_url="https://api-inference.huggingface.co/v1", api_key=os.environ.get('API_KEY') # Replace with your token ) # Define model links model_links = { "Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct", "Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct", # Add more models as needed } # Function to reset conversation def reset_conversation(): st.session_state.conversation = [] st.session_state.messages = [] # Sidebar setup models = [key for key in model_links.keys()] selected_model = st.sidebar.selectbox("Select Model", models) temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5) st.sidebar.button('Reset Chat', on_click=reset_conversation) st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown("*Generated content may be inaccurate or false.*") st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).") # Manage session state if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] st.session_state.prev_option = selected_model reset_conversation() # Model repository id repo_id = model_links[selected_model] # Main chat interface st.subheader(f'TypeGPT.net - {selected_model}') # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("assistant"): try: stream = client.chat.completions.create( model=model_links[selected_model], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], temperature=temp_values, stream=True, max_tokens=3000, ) response = st.write_stream(stream) except Exception as e: response = "😵‍💫 Looks like something went wrong! Please try again later." st.write(response) st.session_state.messages.append({"role": "assistant", "content": response}) # import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() ##################################### # import gradio as gr # gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch() ######################################## # import streamlit as st # from transformers import AutoTokenizer, AutoModelForCausalLM # # Load model directly # tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") # model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") # # Initialize chat history # if "chat_history" not in st.session_state: # st.session_state.chat_history = [] # # Display chat history # for chat in st.session_state.chat_history: # st.write(f"User: {chat['user']}") # st.write(f"Response: {chat['response']}") # # Get user input # user_input = st.text_input("Enter your message:") # # Generate response # if st.button("Send"): # inputs = tokenizer(user_input, return_tensors="pt") # outputs = model.generate(**inputs) # response = tokenizer.decode(outputs[0], skip_special_tokens=True) # st.session_state.chat_history.append({"user": user_input, "response": response}) # st.write(f"Response: {response}")