File size: 5,749 Bytes
2e796d1
b73a01d
 
 
 
 
 
 
 
2e796d1
 
 
 
 
b73a01d
2e796d1
b73a01d
 
2e796d1
b73a01d
 
 
 
 
2e796d1
b73a01d
 
 
2e796d1
 
 
b73a01d
 
2e796d1
 
 
 
 
 
 
b73a01d
2e796d1
 
 
b73a01d
 
2e796d1
 
 
 
 
 
 
 
 
b73a01d
2e796d1
b73a01d
 
 
 
 
2e796d1
 
 
b73a01d
 
 
2e796d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b73a01d
 
985f30b
 
2e796d1
 
b73a01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985f30b
 
 
b73a01d
985f30b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import streamlit as st
from openai import OpenAI
import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Initialize the OpenAI client
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1",
    api_key=os.environ.get('API_KEY')  # Replace with your token
)

# Define model links
model_links = {
    "Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
    "Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
    # Add more models as needed
}

# Function to reset conversation
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []

# Sidebar setup
models = [key for key in model_links.keys()]
selected_model = st.sidebar.selectbox("Select Model", models)
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
st.sidebar.button('Reset Chat', on_click=reset_conversation)

st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).")

# Manage session state
if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    st.session_state.prev_option = selected_model
    reset_conversation()

# Model repository id
repo_id = model_links[selected_model]

# Main chat interface
st.subheader(f'TypeGPT.net - {selected_model}')

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
    with st.chat_message("user"):
        st.markdown(prompt)
    st.session_state.messages.append({"role": "user", "content": prompt})

    with st.chat_message("assistant"):
        try:
            stream = client.chat.completions.create(
                model=model_links[selected_model],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                temperature=temp_values,
                stream=True,
                max_tokens=3000,
            )
            response = st.write_stream(stream)
        except Exception as e:
            response = "😵‍💫 Looks like something went wrong! Please try again later."
            st.write(response)

    st.session_state.messages.append({"role": "assistant", "content": response})




# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")


# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()
#####################################
# import gradio as gr

# gr.load("models/meta-llama/Meta-Llama-3.1-70B-Instruct").launch()
########################################
# import streamlit as st
# from transformers import AutoTokenizer, AutoModelForCausalLM

# # Load model directly
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")

# # Initialize chat history
# if "chat_history" not in st.session_state:
#     st.session_state.chat_history = []

# # Display chat history
# for chat in st.session_state.chat_history:
#     st.write(f"User: {chat['user']}")
#     st.write(f"Response: {chat['response']}")

# # Get user input
# user_input = st.text_input("Enter your message:")

# # Generate response
# if st.button("Send"):
#     inputs = tokenizer(user_input, return_tensors="pt")
#     outputs = model.generate(**inputs)
#     response = tokenizer.decode(outputs[0], skip_special_tokens=True)
#     st.session_state.chat_history.append({"user": user_input, "response": response})
#     st.write(f"Response: {response}")