Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
# Load the finetuned model and tokenizer from Hugging Face Model Hub | |
model_path = "sagar007/phi3.5_finetune" | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map="auto") | |
# Create a text-generation pipeline | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
def generate_text(prompt, max_length=100, temperature=0.7): | |
"""Generate text based on the input prompt.""" | |
generated = generator(prompt, max_length=max_length, temperature=temperature, num_return_sequences=1) | |
return generated[0]['generated_text'] | |
# Create the Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=5, label="Enter your prompt"), | |
gr.Slider(minimum=50, maximum=500, value=100, step=10, label="Max Length"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
], | |
outputs=gr.Textbox(lines=10, label="Generated Text"), | |
title="Finetuned Phi-3.5 Text Generation", | |
description="Enter a prompt and generate text using the finetuned Phi-3.5 model.", | |
) | |
# Launch the app | |
iface.launch() |