File size: 1,298 Bytes
c095a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
# Load the finetuned model and tokenizer from Hugging Face Model Hub
model_path = "sagar007/phi3.5_finetune"
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
# Create a text-generation pipeline
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
def generate_text(prompt, max_length=100, temperature=0.7):
"""Generate text based on the input prompt."""
generated = generator(prompt, max_length=max_length, temperature=temperature, num_return_sequences=1)
return generated[0]['generated_text']
# Create the Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(lines=5, label="Enter your prompt"),
gr.Slider(minimum=50, maximum=500, value=100, step=10, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
],
outputs=gr.Textbox(lines=10, label="Generated Text"),
title="Finetuned Phi-3.5 Text Generation",
description="Enter a prompt and generate text using the finetuned Phi-3.5 model.",
)
# Launch the app
iface.launch() |