sagar007 commited on
Commit
c095a09
·
verified ·
1 Parent(s): 7afb27d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
+
4
+ # Load the finetuned model and tokenizer from Hugging Face Model Hub
5
+ model_path = "sagar007/phi3.5_finetune"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
7
+ model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map="auto")
8
+
9
+ # Create a text-generation pipeline
10
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
11
+
12
+ def generate_text(prompt, max_length=100, temperature=0.7):
13
+ """Generate text based on the input prompt."""
14
+ generated = generator(prompt, max_length=max_length, temperature=temperature, num_return_sequences=1)
15
+ return generated[0]['generated_text']
16
+
17
+ # Create the Gradio interface
18
+ iface = gr.Interface(
19
+ fn=generate_text,
20
+ inputs=[
21
+ gr.Textbox(lines=5, label="Enter your prompt"),
22
+ gr.Slider(minimum=50, maximum=500, value=100, step=10, label="Max Length"),
23
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
24
+ ],
25
+ outputs=gr.Textbox(lines=10, label="Generated Text"),
26
+ title="Finetuned Phi-3.5 Text Generation",
27
+ description="Enter a prompt and generate text using the finetuned Phi-3.5 model.",
28
+ )
29
+
30
+ # Launch the app
31
+ iface.launch()