GPT-2 / app.py
sagar007's picture
Update app.py
c78be87 verified
raw
history blame
7.45 kB
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr
# Define the model architecture
class GPTConfig:
def __init__(self):
self.block_size = 1024
self.vocab_size = 50304
self.n_layer = 12
self.n_head = 12
self.n_embd = 768
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.c_proj(y)
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
def forward(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
# Load the model
def load_model(model_path):
config = GPTConfig()
model = GPT(config)
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
print("Checkpoint keys:", checkpoint.keys()) # Debug print
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
model.eval()
return model
# Load the model
model = load_model('gpt_model.pth') # Replace with the actual path to your .pt file
enc = tiktoken.get_encoding('gpt2')
# Improved text generation function
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr
# [Your existing model code remains unchanged]
# Modified text generation function to yield tokens
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0)
generated = []
with torch.no_grad():
for _ in range(max_length):
outputs, _ = model(input_ids)
next_token_logits = outputs[:, -1, :]
next_token_logits = next_token_logits / temperature
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1)
next_token_probs = F.softmax(top_k_logits, dim=-1)
next_token_index = torch.multinomial(next_token_probs, num_samples=1)
next_token = top_k_indices.gather(-1, next_token_index)
input_ids = torch.cat([input_ids, next_token], dim=-1)
generated.append(next_token.item())
yield enc.decode([next_token.item()])
if next_token.item() == enc.encode('\n')[0] and len(generated) > 20:
break
# Gradio interface
def gradio_generate(prompt, max_length, temperature, top_k):
return generate_text(prompt, max_length, temperature, top_k)
# Custom CSS for the animation effect
custom_css = """
<style>
.output-box {
border: 1px solid #e0e0e0;
border-radius: 8px;
padding: 20px;
font-family: Arial, sans-serif;
line-height: 1.6;
height: 300px;
overflow-y: auto;
background-color: #f9f9f9;
}
.blinking-cursor {
display: inline-block;
width: 10px;
height: 20px;
background-color: #333;
animation: blink 0.7s infinite;
}
@keyframes blink {
0% { opacity: 0; }
50% { opacity: 1; }
100% { opacity: 0; }
}
</style>
"""
# JavaScript for the typing animation
js_code = """
function typeText(text, element) {
let index = 0;
element.innerHTML = '';
function type() {
if (index < text.length) {
element.innerHTML += text[index];
index++;
setTimeout(type, 50); // Adjust typing speed here
} else {
element.innerHTML += '<span class="blinking-cursor"></span>';
}
}
type();
}
"""
iface = gr.Interface(
fn=gradio_generate,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
gr.Slider(minimum=20, maximum=500, value=100, step=1, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k")
],
outputs=gr.HTML(label="Generated Text"),
title="Animated GPT Text Generator",
description="Enter a prompt and adjust parameters to generate text using a fine-tuned GPT model.",
css=custom_css,
js=js_code,
live=True
)
# Launch the app
iface.launch()