Update app.py
Browse files
app.py
CHANGED
@@ -120,6 +120,15 @@ model = load_model('gpt_model.pth') # Replace with the actual path to your .pt
|
|
120 |
enc = tiktoken.get_encoding('gpt2')
|
121 |
|
122 |
# Improved text generation function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
124 |
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0)
|
125 |
generated = []
|
@@ -128,32 +137,70 @@ def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
|
128 |
for _ in range(max_length):
|
129 |
outputs, _ = model(input_ids)
|
130 |
next_token_logits = outputs[:, -1, :]
|
131 |
-
|
132 |
-
# Apply temperature
|
133 |
next_token_logits = next_token_logits / temperature
|
134 |
-
|
135 |
-
# Apply top-k filtering
|
136 |
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1)
|
137 |
next_token_probs = F.softmax(top_k_logits, dim=-1)
|
138 |
-
|
139 |
-
# Sample from the filtered distribution
|
140 |
next_token_index = torch.multinomial(next_token_probs, num_samples=1)
|
141 |
next_token = top_k_indices.gather(-1, next_token_index)
|
142 |
|
143 |
input_ids = torch.cat([input_ids, next_token], dim=-1)
|
144 |
generated.append(next_token.item())
|
145 |
|
146 |
-
|
|
|
147 |
if next_token.item() == enc.encode('\n')[0] and len(generated) > 20:
|
148 |
break
|
149 |
-
|
150 |
-
generated_text = enc.decode(generated)
|
151 |
-
return prompt + generated_text
|
152 |
|
153 |
# Gradio interface
|
154 |
def gradio_generate(prompt, max_length, temperature, top_k):
|
155 |
return generate_text(prompt, max_length, temperature, top_k)
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
iface = gr.Interface(
|
158 |
fn=gradio_generate,
|
159 |
inputs=[
|
@@ -162,9 +209,12 @@ iface = gr.Interface(
|
|
162 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
163 |
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k")
|
164 |
],
|
165 |
-
outputs=gr.
|
166 |
-
title="GPT Text Generator",
|
167 |
-
description="Enter a prompt and adjust parameters to generate text using a fine-tuned GPT model."
|
|
|
|
|
|
|
168 |
)
|
169 |
|
170 |
# Launch the app
|
|
|
120 |
enc = tiktoken.get_encoding('gpt2')
|
121 |
|
122 |
# Improved text generation function
|
123 |
+
import torch
|
124 |
+
import torch.nn as nn
|
125 |
+
from torch.nn import functional as F
|
126 |
+
import tiktoken
|
127 |
+
import gradio as gr
|
128 |
+
|
129 |
+
# [Your existing model code remains unchanged]
|
130 |
+
|
131 |
+
# Modified text generation function to yield tokens
|
132 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
133 |
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0)
|
134 |
generated = []
|
|
|
137 |
for _ in range(max_length):
|
138 |
outputs, _ = model(input_ids)
|
139 |
next_token_logits = outputs[:, -1, :]
|
|
|
|
|
140 |
next_token_logits = next_token_logits / temperature
|
|
|
|
|
141 |
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1)
|
142 |
next_token_probs = F.softmax(top_k_logits, dim=-1)
|
|
|
|
|
143 |
next_token_index = torch.multinomial(next_token_probs, num_samples=1)
|
144 |
next_token = top_k_indices.gather(-1, next_token_index)
|
145 |
|
146 |
input_ids = torch.cat([input_ids, next_token], dim=-1)
|
147 |
generated.append(next_token.item())
|
148 |
|
149 |
+
yield enc.decode([next_token.item()])
|
150 |
+
|
151 |
if next_token.item() == enc.encode('\n')[0] and len(generated) > 20:
|
152 |
break
|
|
|
|
|
|
|
153 |
|
154 |
# Gradio interface
|
155 |
def gradio_generate(prompt, max_length, temperature, top_k):
|
156 |
return generate_text(prompt, max_length, temperature, top_k)
|
157 |
|
158 |
+
# Custom CSS for the animation effect
|
159 |
+
custom_css = """
|
160 |
+
<style>
|
161 |
+
.output-box {
|
162 |
+
border: 1px solid #e0e0e0;
|
163 |
+
border-radius: 8px;
|
164 |
+
padding: 20px;
|
165 |
+
font-family: Arial, sans-serif;
|
166 |
+
line-height: 1.6;
|
167 |
+
height: 300px;
|
168 |
+
overflow-y: auto;
|
169 |
+
background-color: #f9f9f9;
|
170 |
+
}
|
171 |
+
.blinking-cursor {
|
172 |
+
display: inline-block;
|
173 |
+
width: 10px;
|
174 |
+
height: 20px;
|
175 |
+
background-color: #333;
|
176 |
+
animation: blink 0.7s infinite;
|
177 |
+
}
|
178 |
+
@keyframes blink {
|
179 |
+
0% { opacity: 0; }
|
180 |
+
50% { opacity: 1; }
|
181 |
+
100% { opacity: 0; }
|
182 |
+
}
|
183 |
+
</style>
|
184 |
+
"""
|
185 |
+
|
186 |
+
# JavaScript for the typing animation
|
187 |
+
js_code = """
|
188 |
+
function typeText(text, element) {
|
189 |
+
let index = 0;
|
190 |
+
element.innerHTML = '';
|
191 |
+
function type() {
|
192 |
+
if (index < text.length) {
|
193 |
+
element.innerHTML += text[index];
|
194 |
+
index++;
|
195 |
+
setTimeout(type, 50); // Adjust typing speed here
|
196 |
+
} else {
|
197 |
+
element.innerHTML += '<span class="blinking-cursor"></span>';
|
198 |
+
}
|
199 |
+
}
|
200 |
+
type();
|
201 |
+
}
|
202 |
+
"""
|
203 |
+
|
204 |
iface = gr.Interface(
|
205 |
fn=gradio_generate,
|
206 |
inputs=[
|
|
|
209 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
210 |
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k")
|
211 |
],
|
212 |
+
outputs=gr.HTML(label="Generated Text"),
|
213 |
+
title="Animated GPT Text Generator",
|
214 |
+
description="Enter a prompt and adjust parameters to generate text using a fine-tuned GPT model.",
|
215 |
+
css=custom_css,
|
216 |
+
js=js_code,
|
217 |
+
live=True
|
218 |
)
|
219 |
|
220 |
# Launch the app
|