File size: 7,454 Bytes
6c2fd08 4ca155b 02cf0bb 85585aa 6c2fd08 85585aa 4ca155b 85585aa 02cf0bb 4ca155b 02cf0bb 5ae24e1 02cf0bb 6c2fd08 85585aa a075fee 02cf0bb 6c2fd08 85585aa c78be87 85585aa 02cf0bb 85585aa 02cf0bb 4ca155b 85585aa 02cf0bb 85585aa 02cf0bb c78be87 85585aa 02cf0bb 6c2fd08 02cf0bb 85585aa c78be87 02cf0bb 85585aa 6c2fd08 02cf0bb 85585aa 6c2fd08 c78be87 6c2fd08 02cf0bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr
# Define the model architecture
class GPTConfig:
def __init__(self):
self.block_size = 1024
self.vocab_size = 50304
self.n_layer = 12
self.n_head = 12
self.n_embd = 768
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.c_proj(y)
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
def forward(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
# Load the model
def load_model(model_path):
config = GPTConfig()
model = GPT(config)
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
print("Checkpoint keys:", checkpoint.keys()) # Debug print
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
model.eval()
return model
# Load the model
model = load_model('gpt_model.pth') # Replace with the actual path to your .pt file
enc = tiktoken.get_encoding('gpt2')
# Improved text generation function
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr
# [Your existing model code remains unchanged]
# Modified text generation function to yield tokens
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0)
generated = []
with torch.no_grad():
for _ in range(max_length):
outputs, _ = model(input_ids)
next_token_logits = outputs[:, -1, :]
next_token_logits = next_token_logits / temperature
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1)
next_token_probs = F.softmax(top_k_logits, dim=-1)
next_token_index = torch.multinomial(next_token_probs, num_samples=1)
next_token = top_k_indices.gather(-1, next_token_index)
input_ids = torch.cat([input_ids, next_token], dim=-1)
generated.append(next_token.item())
yield enc.decode([next_token.item()])
if next_token.item() == enc.encode('\n')[0] and len(generated) > 20:
break
# Gradio interface
def gradio_generate(prompt, max_length, temperature, top_k):
return generate_text(prompt, max_length, temperature, top_k)
# Custom CSS for the animation effect
custom_css = """
<style>
.output-box {
border: 1px solid #e0e0e0;
border-radius: 8px;
padding: 20px;
font-family: Arial, sans-serif;
line-height: 1.6;
height: 300px;
overflow-y: auto;
background-color: #f9f9f9;
}
.blinking-cursor {
display: inline-block;
width: 10px;
height: 20px;
background-color: #333;
animation: blink 0.7s infinite;
}
@keyframes blink {
0% { opacity: 0; }
50% { opacity: 1; }
100% { opacity: 0; }
}
</style>
"""
# JavaScript for the typing animation
js_code = """
function typeText(text, element) {
let index = 0;
element.innerHTML = '';
function type() {
if (index < text.length) {
element.innerHTML += text[index];
index++;
setTimeout(type, 50); // Adjust typing speed here
} else {
element.innerHTML += '<span class="blinking-cursor"></span>';
}
}
type();
}
"""
iface = gr.Interface(
fn=gradio_generate,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
gr.Slider(minimum=20, maximum=500, value=100, step=1, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k")
],
outputs=gr.HTML(label="Generated Text"),
title="Animated GPT Text Generator",
description="Enter a prompt and adjust parameters to generate text using a fine-tuned GPT model.",
css=custom_css,
js=js_code,
live=True
)
# Launch the app
iface.launch() |