sagar007's picture
Update app.py
aa6ca85 verified
raw
history blame
40.3 kB
# --- Imports ---
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from duckduckgo_search import DDGS
import time
import torch
from datetime import datetime
import os
import subprocess
import numpy as np
from typing import List, Dict, Tuple, Any, Optional, Union
from functools import lru_cache
# No asyncio needed for synchronous version
import threading
# No ThreadPoolExecutor needed for synchronous version
import warnings
import traceback # For detailed error logging
import re # For text cleaning
import shutil # For checking sudo/file operations
import html # For escaping HTML
import sys # For sys.path manipulation
import spaces # <<<--- IMPORT SPACES FOR THE DECORATOR
# --- Configuration ---
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
MAX_SEARCH_RESULTS = 5
TTS_SAMPLE_RATE = 24000
MAX_TTS_CHARS = 1000
MAX_NEW_TOKENS = 300
TEMPERATURE = 0.7
TOP_P = 0.95
KOKORO_PATH = 'Kokoro-82M'
# Define expected durations for ZeroGPU decorator
LLM_GPU_DURATION = 120 # Seconds (adjust based on expected LLM generation time)
TTS_GPU_DURATION = 45 # Seconds (adjust based on expected TTS generation time)
# --- Initialization ---
# Suppress specific warnings
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
# --- LLM Initialization ---
llm_model: Optional[AutoModelForCausalLM] = None
llm_tokenizer: Optional[AutoTokenizer] = None
llm_device = "cpu"
try:
print("[LLM Init] Initializing Language Model...")
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
llm_tokenizer.pad_token = llm_tokenizer.eos_token
# For ZeroGPU, we assume GPU will be available when needed, load with cuda preference
# If running locally without GPU, it might try CPU based on device_map="auto" fallback
llm_device = "cuda" if torch.cuda.is_available() else "cpu" # Check initial availability info
torch_dtype = torch.float16 if llm_device == "cuda" else torch.float32
# device_map="auto" is generally okay, ZeroGPU handles the actual assignment during decorated function call
device_map = "auto"
print(f"[LLM Init] Preparing model load (target device via ZeroGPU: cuda, dtype={torch_dtype})")
llm_model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map=device_map, # Let accelerate/ZeroGPU handle placement
low_cpu_mem_usage=True,
torch_dtype=torch_dtype,
)
print(f"[LLM Init] LLM loaded configuration successfully. Ready for GPU assignment via @spaces.GPU.")
llm_model.eval()
except Exception as e:
print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}")
print(traceback.format_exc())
llm_model = None
llm_tokenizer = None
print("[LLM Init] LLM features will be unavailable.")
# --- TTS Initialization ---
# (TTS setup remains the same, runs in background)
VOICE_CHOICES = {
'πŸ‡ΊπŸ‡Έ Female (Default)': 'af',
'πŸ‡ΊπŸ‡Έ Bella': 'af_bella',
'πŸ‡ΊπŸ‡Έ Sarah': 'af_sarah',
'πŸ‡ΊπŸ‡Έ Nicole': 'af_nicole'
}
TTS_ENABLED = False
tts_model: Optional[Any] = None
voicepacks: Dict[str, Any] = {}
tts_device = "cpu"
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess:
"""Runs a subprocess command, captures output, and handles errors."""
print(f"Running command: {' '.join(cmd)}")
try:
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
if not check or result.returncode != 0:
if result.stdout: print(f" Stdout: {result.stdout.strip()}")
if result.stderr: print(f" Stderr: {result.stderr.strip()}")
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
print(f" Command successful.")
return result
except FileNotFoundError:
print(f" Error: Command not found - {cmd[0]}")
raise
except subprocess.TimeoutExpired:
print(f" Error: Command timed out - {' '.join(cmd)}")
raise
except subprocess.CalledProcessError as e:
print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})")
if e.stdout: print(f" Stdout: {e.stdout.strip()}")
if e.stderr: print(f" Stderr: {e.stderr.strip()}")
raise
def setup_tts_task():
"""Initializes Kokoro TTS model and dependencies."""
global TTS_ENABLED, tts_model, voicepacks, tts_device
print("[TTS Setup] Starting background initialization...")
# TTS device determination depends on where generate_tts_speech will run.
# If decorated with @spaces.GPU, it will use CUDA when called.
tts_device = "cuda" # Assume it will run on GPU via decorator
print(f"[TTS Setup] Target device for TTS model (via @spaces.GPU): {tts_device}")
can_sudo = shutil.which('sudo') is not None
apt_cmd_prefix = ['sudo'] if can_sudo else []
absolute_kokoro_path = os.path.abspath(KOKORO_PATH)
try:
# 1. Clone/Update Repo
if not os.path.exists(absolute_kokoro_path):
print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...")
# (Cloning logic as before)
try: _run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
except Exception as lfs_err: print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}")
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path])
try: _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
except Exception as lfs_pull_err: print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
else:
print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
# 2. Install espeak
print("[TTS Setup] Checking/Installing espeak...")
try: # (espeak install logic as before)
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
print("[TTS Setup] espeak-ng installed or already present.")
except Exception:
print("[TTS Setup] espeak-ng installation failed, trying espeak...")
try:
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak'])
print("[TTS Setup] espeak installed or already present.")
except Exception as espeak_err:
print(f"[TTS Setup] ERROR: Failed to install espeak: {espeak_err}. TTS disabled.")
return
# 3. Load Kokoro Model and Voices
sys_path_updated = False
if os.path.exists(absolute_kokoro_path):
print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}")
try: print(f"[TTS Setup] Contents: {os.listdir(absolute_kokoro_path)}")
except OSError as list_err: print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}")
if absolute_kokoro_path not in sys.path:
sys.path.insert(0, absolute_kokoro_path)
sys_path_updated = True
print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.")
try:
print("[TTS Setup] Attempting to import Kokoro modules...")
from models import build_model
from kokoro import generate as generate_tts_internal
print("[TTS Setup] Kokoro modules imported successfully.")
globals()['build_model'] = build_model
globals()['generate_tts_internal'] = generate_tts_internal
model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth')
if not os.path.exists(model_file):
print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.")
return
# Load model onto CPU initially, ZeroGPU decorator will handle moving/using GPU
print(f"[TTS Setup] Loading TTS model config from {model_file} (target device: {tts_device} via @spaces.GPU)...")
# Load onto CPU first to avoid issues before GPU is attached.
# The build_model function might need adjustment if it forces device placement.
# Assuming build_model can load structure then decorator handles device use.
# If build_model *requires* device at load, this might need adjustment.
tts_model = build_model(model_file, 'cpu') # <<< Load to CPU first
tts_model.eval()
print("[TTS Setup] TTS model structure loaded (CPU).")
# Load voices onto CPU
loaded_voices = 0
for voice_name, voice_id in VOICE_CHOICES.items():
voice_file_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
if os.path.exists(voice_file_path):
try:
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name}) to CPU")
voicepacks[voice_id] = torch.load(voice_file_path, map_location='cpu') # <<< Load to CPU
loaded_voices += 1
except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
else: print(f"[TTS Setup] Info: Voice file {voice_file_path} not found.")
if loaded_voices == 0:
print("[TTS Setup] ERROR: No voicepacks loaded. TTS disabled.")
tts_model = None; return
TTS_ENABLED = True
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
except ImportError as ie:
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.")
print(traceback.format_exc())
except Exception as load_err:
print(f"[TTS Setup] ERROR: Exception during TTS model/voice loading: {load_err}. TTS disabled.")
print(traceback.format_exc())
finally:
if sys_path_updated: # Cleanup sys.path
try:
if sys.path[0] == absolute_kokoro_path: sys.path.pop(0)
elif absolute_kokoro_path in sys.path: sys.path.remove(absolute_kokoro_path)
print(f"[TTS Setup] Cleaned up sys.path.")
except Exception as cleanup_err: print(f"[TTS Setup] Warning: Error cleaning sys.path: {cleanup_err}")
else:
print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
except Exception as e:
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
print(traceback.format_exc())
TTS_ENABLED = False; tts_model = None; voicepacks.clear()
# Start TTS setup thread
print("Starting TTS setup thread...")
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
tts_setup_thread.start()
# --- Core Logic Functions (SYNCHRONOUS + @spaces.GPU) ---
# Web search remains synchronous
@lru_cache(maxsize=128)
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
"""Synchronous web search function with caching."""
# (Implementation remains the same as before)
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
try:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
print(f"[Web Search] Found {len(results)} results.")
formatted = [{
"id": i + 1, "title": res.get("title", "No Title"),
"snippet": res.get("body", "No Snippet"), "url": res.get("href", "#"),
} for i, res in enumerate(results)]
return formatted
except Exception as e:
print(f"[Web Search] Error: {e}"); return []
# Prompt formatting remains the same
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
"""Formats the prompt for the LLM."""
# (Implementation remains the same as before)
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
context_str = "\n\n".join(
[f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]
) if context else "No relevant web context found."
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}
CONTEXT:
---
{context_str}
---
USER: {html.escape(query)}
ASSISTANT:"""
# Source formatting remains the same
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
"""Formats search results into HTML for display."""
# (Implementation remains the same as before)
if not web_results: return "<div class='no-sources'>No sources found.</div>"
items_html = ""
for res in web_results:
title_safe = html.escape(res.get("title", "Source"))
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
url = html.escape(res.get("url", "#"))
items_html += f"""<div class='source-item'><div class='source-number'>[{res['id']}]</div><div class='source-content'><a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a><div class='source-snippet'>{snippet_safe}</div></div></div>"""
return f"<div class='sources-container'>{items_html}</div>"
# <<<--- ADD @spaces.GPU decorator AND MAKE SYNCHRONOUS --->>>
@spaces.GPU(duration=LLM_GPU_DURATION)
def generate_llm_answer(prompt: str) -> str:
"""Generates answer using the LLM (Synchronous, GPU-decorated)."""
if not llm_model or not llm_tokenizer:
print("[LLM Generate] LLM model or tokenizer not available.")
return "Error: Language Model is not available."
print(f"[LLM Generate] Requesting generation (sync, GPU) (prompt length {len(prompt)})...")
start_time = time.time()
try:
# Ensure model is on the GPU (ZeroGPU should handle this)
# It might be safer to explicitly move model IF ZeroGPU doesn't guarantee it.
# Let's assume ZeroGPU handles the context for now.
current_device = next(llm_model.parameters()).device
print(f"[LLM Generate] Model currently on device: {current_device}") # Debug device
inputs = llm_tokenizer(
prompt, return_tensors="pt", padding=True, truncation=True,
max_length=1024, return_attention_mask=True
).to(current_device) # Send input to model's device
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
# Direct synchronous call
outputs = llm_model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=MAX_NEW_TOKENS,
temperature=TEMPERATURE, top_p=TOP_P,
pad_token_id=llm_tokenizer.eos_token_id,
eos_token_id=llm_tokenizer.eos_token_id,
do_sample=True, num_return_sequences=1
)
output_ids = outputs[0][inputs.input_ids.shape[1]:]
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
if not answer_part: answer_part = "*Model generated an empty response.*"
end_time = time.time()
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
return answer_part
except Exception as e:
print(f"[LLM Generate] Error: {e}")
print(traceback.format_exc())
return f"Error during answer generation: Check logs."
# <<<--- ADD @spaces.GPU decorator AND MAKE SYNCHRONOUS --->>>
@spaces.GPU(duration=TTS_GPU_DURATION)
def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
"""Generates speech using TTS model (Synchronous, GPU-decorated)."""
if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
print("[TTS Generate] Skipping: TTS not ready.")
return None
if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model"):
print("[TTS Generate] Skipping: Invalid or empty text.")
return None
print(f"[TTS Generate] Requesting speech (sync, GPU) (length {len(text)}, voice '{voice_id}')...")
start_time = time.time()
try:
actual_voice_id = voice_id
if voice_id not in voicepacks:
print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying 'af'.")
actual_voice_id = 'af'
if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af' unavailable."); return None
# Clean text (same cleaning logic as before)
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text)
clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL)
clean_text = re.sub(r'`[^`]*`', '', clean_text)
clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE)
clean_text = re.sub(r'[\*#_]', '', clean_text)
clean_text = html.unescape(clean_text)
clean_text = ' '.join(clean_text.split())
if not clean_text: print("[TTS Generate] Skipping: Text empty after cleaning."); return None
if len(clean_text) > MAX_TTS_CHARS:
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
clean_text = clean_text[:MAX_TTS_CHARS]
last_punct = max(clean_text.rfind(p) for p in '.?!; ')
if last_punct != -1: clean_text = clean_text[:last_punct+1]
clean_text += "..."
print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'")
gen_func = globals()['generate_tts_internal']
voice_pack_data = voicepacks[actual_voice_id]
# *** Crucial for ZeroGPU: Move TTS model and voicepack to CUDA within the decorated function ***
current_device = 'cuda' # Assume GPU is attached by decorator
try:
print(f"[TTS Generate] Moving TTS model to {current_device}...")
tts_model.to(current_device)
# Move voicepack data (might be a dict of tensors)
if isinstance(voice_pack_data, dict):
moved_voice_pack = {k: v.to(current_device) if isinstance(v, torch.Tensor) else v for k, v in voice_pack_data.items()}
elif isinstance(voice_pack_data, torch.Tensor):
moved_voice_pack = voice_pack_data.to(current_device)
else:
moved_voice_pack = voice_pack_data # Assume not tensors if not dict/tensor
print(f"[TTS Generate] TTS model and voicepack on {current_device}.")
# Direct synchronous call on GPU
audio_data, _ = gen_func(tts_model, clean_text, moved_voice_pack, 'afr')
finally:
# *** Optional but recommended: Move model back to CPU to free GPU memory if needed ***
# ZeroGPU might handle this, but explicit move-back can be safer if running locally too
try:
print("[TTS Generate] Moving TTS model back to CPU...")
tts_model.to('cpu')
# No need to move voicepack back, it's loaded to CPU initially
except Exception as move_back_err:
print(f"[TTS Generate] Warning: Could not move TTS model back to CPU: {move_back_err}")
# Process output (remains same)
if isinstance(audio_data, torch.Tensor): audio_np = audio_data.detach().cpu().numpy()
elif isinstance(audio_data, np.ndarray): audio_np = audio_data
else: print("[TTS Generate] Warning: Unexpected audio data type."); return None
audio_np = audio_np.flatten().astype(np.float32)
end_time = time.time()
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
return (TTS_SAMPLE_RATE, audio_np)
except Exception as e:
print(f"[TTS Generate] Error: {str(e)}")
print(traceback.format_exc())
return None
# Voice ID mapping remains same
def get_voice_id_from_display(voice_display_name: str) -> str:
return VOICE_CHOICES.get(voice_display_name, 'af')
# --- Gradio Interaction Logic (SYNCHRONOUS) ---
ChatHistoryType = List[Dict[str, Optional[str]]]
def handle_interaction(
query: str,
history: ChatHistoryType,
selected_voice_display_name: str
) -> Tuple[ChatHistoryType, str, str, Optional[Tuple[int, np.ndarray]], Any]: # Return type matches outputs
"""Synchronous function to handle user queries for ZeroGPU."""
print(f"\n--- Handling Query (Sync) ---")
query = query.strip()
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
if not query:
print("Empty query received.")
# Return initial state immediately
return history, "*Please enter a non-empty query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
# Initial state updates (won't be seen until the end in Gradio)
current_history: ChatHistoryType = history + [{"role": "user", "content": query}]
current_history.append({"role": "assistant", "content": "*Processing... Please wait.*"}) # Placeholder
status_update = "*Processing... Please wait.*"
sources_html = "<div class='searching'><span>Searching & Processing...</span></div>"
audio_data = None
button_update = gr.Button(value="Processing...", interactive=False) # Disabled during processing
# --- Start Blocking Operations ---
try:
# 1. Perform Web Search (Sync)
print("[Handler] Performing web search...")
web_results = get_web_results_sync(query)
sources_html = format_sources_html(web_results) # Update sources now
# 2. Generate LLM Answer (Sync, Decorated)
print("[Handler] Generating LLM answer...")
status_update = "*Generating answer...*" # Update status text
# (UI won't update here yet)
llm_prompt = format_llm_prompt(query, web_results)
final_answer = generate_llm_answer(llm_prompt) # This call triggers GPU attachment
status_update = final_answer # Answer generated
# 3. Generate TTS Speech (Sync, Decorated, Optional)
tts_status_message = ""
if TTS_ENABLED and not final_answer.startswith("Error"):
print("[Handler] Generating TTS speech...")
status_update += "\n\n*(Generating audio...)*" # Append status
# (UI won't update here yet)
voice_id = get_voice_id_from_display(selected_voice_display_name)
audio_data = generate_tts_speech(final_answer, voice_id) # This call triggers GPU attachment
if audio_data is None:
tts_status_message = "\n\n*(Audio generation failed)*"
elif not TTS_ENABLED:
if tts_setup_thread.is_alive(): tts_status_message = "\n\n*(TTS initializing...)*"
else: tts_status_message = "\n\n*(TTS unavailable)*"
# Combine final answer with status
final_answer_with_status = final_answer + tts_status_message
status_update = final_answer_with_status
current_history[-1]["content"] = final_answer_with_status # Update history
button_update = gr.Button(value="Search", interactive=True) # Re-enable button
print("--- Query Handling Complete (Sync) ---")
except Exception as e:
print(f"[Handler] Error during processing: {e}")
print(traceback.format_exc())
error_message = f"*An error occurred: {e}*"
current_history[-1]["content"] = error_message # Update history with error
status_update = error_message
sources_html = "<div class='error'>Request failed.</div>"
audio_data = None
button_update = gr.Button(value="Search", interactive=True) # Re-enable button on error
# Return the final state tuple for all outputs
return current_history, status_update, sources_html, audio_data, button_update
# --- Gradio UI Definition ---
# (CSS remains the same)
css = """
/* ... [Your existing refined CSS] ... */
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
#header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); }
#header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); }
#header h3 { color: #a8a9ab; }
.search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; }
.search-box { padding: 0; margin-bottom: 1rem; display: flex; align-items: center; }
.search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; height: 44px !important; flex-grow: 1; }
.search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px; height: 44px !important; width: 180px; flex-shrink: 0; }
.search-box .gradio-button { border-radius: 0 8px 8px 0 !important; height: 44px !important; flex-shrink: 0; }
.search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 100% !important; padding: 0 12px !important;}
.search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; z-index: 1; }
.search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 100% !important; }
.search-box button:hover { background: #1d4ed8 !important; }
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
.answer-box { /* Now used for status/final text */ background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;}
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
.sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; }
.sources-container { margin-top: 0; }
.source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; }
.source-item:last-child { border-bottom: none; }
.source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;}
.source-content { flex: 1; min-width: 0;} /* Allow content to shrink */
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
.chat-history { max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
.chat-history > div { padding: 1rem; }
.chat-history::-webkit-scrollbar { width: 6px; }
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
.examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; }
.examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; }
.examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; }
.markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; }
.markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; }
.markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; }
.markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;}
.markdown-content h3 { font-size: 1.2em !important; }
.markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; }
.markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; }
.markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; }
.markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;}
.markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;}
.markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; }
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
.voice-selector { margin: 0; padding: 0; height: 100%; }
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
.voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;}
.audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;}
.audio-player audio { width: 100% !important; }
.searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; }
.searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; }
.error { background: #fef2f2; color: #ef4444; border-color: #fecaca; }
.no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;}
@keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } }
.searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; }
/* Dark Mode Styles */
.dark .gradio-container { background-color: #111827 !important; }
.dark #header { background: linear-gradient(135deg, #1f2937, #374151); }
.dark #header h3 { color: #9ca3af; }
.dark .search-container { background: #1f2937; border-color: #374151; }
.dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; }
.dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; }
.dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; }
.dark .search-box button { background: #3b82f6 !important; }
.dark .search-box button:hover { background: #2563eb !important; }
.dark .search-box button:disabled { background: #4b5563 !important; }
.dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; }
.dark .answer-box p { color: #d1d5db; }
.dark .answer-box code { background: #374151; color: #9ca3af; }
.dark .sources-box { background: #1f2937; border-color: #374151; }
.dark .sources-box h3 { color: #f9fafb; }
.dark .source-item { border-bottom-color: #374151; }
.dark .source-item:hover { background-color: #374151; }
.dark .source-number { color: #9ca3af; }
.dark .source-title { color: #60a5fa; }
.dark .source-title:hover { color: #93c5fd; }
.dark .source-snippet { color: #d1d5db; }
.dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;}
.dark .chat-history::-webkit-scrollbar-track { background: #374151; }
.dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; }
.dark .examples-container { background: #374151; border-color: #4b5563; }
.dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; }
.dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; }
.dark .markdown-content { color: #d1d5db !important; }
.dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; }
.dark .markdown-content a { color: #60a5fa !important; }
.dark .markdown-content a:hover { color: #93c5fd !important; }
.dark .markdown-content code { background: #374151 !important; color: #9ca3af; }
.dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;}
.dark .markdown-content pre code { background: transparent !important; }
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
.dark .markdown-content th { background: #374151 !important; }
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
.dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; }
.dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; }
.dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; }
.dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; }
.dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; }
.dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; }
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
"""
with gr.Blocks(title="AI Search Assistant (ZeroGPU Sync)", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
chat_history_state = gr.State([])
with gr.Column():
with gr.Column(elem_id="header"):
gr.Markdown("# πŸ” AI Search Assistant (ZeroGPU Version)")
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
gr.Markdown("*(UI will block during processing for ZeroGPU compatibility)*")
with gr.Column(elem_classes="search-container"):
with gr.Row(elem_classes="search-box"):
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
with gr.Row(elem_classes="results-container"):
with gr.Column(scale=3):
chatbot_display = gr.Chatbot(
label="Conversation", bubble_full_width=True, height=500,
elem_classes="chat-history", type="messages", show_label=False,
avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png")
)
# This Markdown will only show the *final* status/answer text
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
with gr.Column(scale=2):
with gr.Column(elem_classes="sources-box"):
gr.Markdown("### Sources")
sources_output_html = gr.HTML(value="<div class='no-sources'>Sources will appear here.</div>")
with gr.Row(elem_classes="examples-container"):
gr.Examples(
examples=[ "Latest news about renewable energy", "Explain Large Language Models (LLMs)",
"Symptoms and prevention tips for the flu", "Compare Python and JavaScript",
"Summarize the Paris Agreement", ],
inputs=search_input, label="Try these examples:",
)
# --- Event Handling Setup (Synchronous) ---
event_inputs = [search_input, chat_history_state, voice_select]
event_outputs = [ chatbot_display, answer_status_output, sources_output_html,
audio_player, search_btn ]
# Connect the SYNCHRONOUS handle_interaction function directly
search_btn.click(
fn=handle_interaction, # Use the synchronous handler
inputs=event_inputs,
outputs=event_outputs
)
search_input.submit(
fn=handle_interaction, # Use the synchronous handler
inputs=event_inputs,
outputs=event_outputs
)
# --- Main Execution ---
if __name__ == "__main__":
print("Starting Gradio application (Synchronous for ZeroGPU)...")
# Ensure TTS setup thread has a chance to start
time.sleep(1) # Small delay might help see initial TTS logs
demo.queue(max_size=20).launch(
debug=True,
share=True,
)
print("Gradio application stopped.")