Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,30 +10,31 @@ import subprocess
|
|
10 |
import numpy as np
|
11 |
from typing import List, Dict, Tuple, Any, Optional, Union
|
12 |
from functools import lru_cache
|
13 |
-
|
14 |
import threading
|
15 |
-
|
16 |
import warnings
|
17 |
import traceback # For detailed error logging
|
18 |
import re # For text cleaning
|
19 |
import shutil # For checking sudo/file operations
|
20 |
import html # For escaping HTML
|
21 |
import sys # For sys.path manipulation
|
|
|
22 |
|
23 |
# --- Configuration ---
|
24 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
25 |
MAX_SEARCH_RESULTS = 5
|
26 |
TTS_SAMPLE_RATE = 24000
|
27 |
-
MAX_TTS_CHARS = 1000
|
28 |
MAX_NEW_TOKENS = 300
|
29 |
TEMPERATURE = 0.7
|
30 |
TOP_P = 0.95
|
31 |
-
KOKORO_PATH = 'Kokoro-82M'
|
|
|
|
|
|
|
32 |
|
33 |
# --- Initialization ---
|
34 |
-
# Thread Pool Executor for blocking tasks
|
35 |
-
executor = ThreadPoolExecutor(max_workers=os.cpu_count() or 4)
|
36 |
-
|
37 |
# Suppress specific warnings
|
38 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
39 |
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
@@ -48,27 +49,21 @@ try:
|
|
48 |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
49 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
torch_dtype = torch.float32
|
59 |
-
device_map = {"": "cpu"}
|
60 |
-
print(f"[LLM Init] CUDA not found. Loading model on CPU with dtype={torch_dtype}")
|
61 |
|
62 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
63 |
MODEL_NAME,
|
64 |
-
device_map=device_map,
|
65 |
low_cpu_mem_usage=True,
|
66 |
torch_dtype=torch_dtype,
|
67 |
-
# attn_implementation="flash_attention_2" # Optional
|
68 |
)
|
69 |
-
|
70 |
-
effective_device_map = llm_model.hf_device_map if hasattr(llm_model, 'hf_device_map') else device_map
|
71 |
-
print(f"[LLM Init] LLM loaded successfully. Device map: {effective_device_map}")
|
72 |
llm_model.eval()
|
73 |
|
74 |
except Exception as e:
|
@@ -80,6 +75,7 @@ except Exception as e:
|
|
80 |
|
81 |
|
82 |
# --- TTS Initialization ---
|
|
|
83 |
VOICE_CHOICES = {
|
84 |
'๐บ๐ธ Female (Default)': 'af',
|
85 |
'๐บ๐ธ Bella': 'af_bella',
|
@@ -91,18 +87,16 @@ tts_model: Optional[Any] = None
|
|
91 |
voicepacks: Dict[str, Any] = {}
|
92 |
tts_device = "cpu"
|
93 |
|
94 |
-
# Helper for running subprocesses
|
95 |
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess:
|
96 |
"""Runs a subprocess command, captures output, and handles errors."""
|
97 |
print(f"Running command: {' '.join(cmd)}")
|
98 |
try:
|
99 |
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
|
100 |
-
# Only print output details if check failed or for specific successful commands
|
101 |
if not check or result.returncode != 0:
|
102 |
-
|
103 |
-
|
104 |
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
|
105 |
-
|
106 |
return result
|
107 |
except FileNotFoundError:
|
108 |
print(f" Error: Command not found - {cmd[0]}")
|
@@ -116,189 +110,158 @@ def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = Non
|
|
116 |
if e.stderr: print(f" Stderr: {e.stderr.strip()}")
|
117 |
raise
|
118 |
|
119 |
-
# TTS Setup Task (runs in background thread)
|
120 |
def setup_tts_task():
|
121 |
"""Initializes Kokoro TTS model and dependencies."""
|
122 |
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
123 |
print("[TTS Setup] Starting background initialization...")
|
124 |
|
125 |
-
|
126 |
-
|
|
|
|
|
127 |
|
128 |
can_sudo = shutil.which('sudo') is not None
|
129 |
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
130 |
-
absolute_kokoro_path = os.path.abspath(KOKORO_PATH)
|
131 |
|
132 |
try:
|
133 |
-
# 1. Clone
|
134 |
if not os.path.exists(absolute_kokoro_path):
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
print("[TTS Setup] Running git lfs pull...")
|
143 |
-
_run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
|
144 |
-
except Exception as lfs_pull_err:
|
145 |
-
print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
|
146 |
else:
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
# print("[TTS Setup] Updating existing repo...")
|
151 |
-
# _run_subprocess(['git', 'pull'], cwd=absolute_kokoro_path)
|
152 |
-
# _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
|
153 |
-
# except Exception as update_err:
|
154 |
-
# print(f"[TTS Setup] Warning: Failed to update repo: {update_err}")
|
155 |
-
|
156 |
-
# 2. Install espeak dependency
|
157 |
print("[TTS Setup] Checking/Installing espeak...")
|
158 |
-
try:
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
|
163 |
-
print("[TTS Setup] espeak-ng installed or already present.")
|
164 |
except Exception:
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
return # Cannot proceed
|
173 |
|
174 |
# 3. Load Kokoro Model and Voices
|
175 |
sys_path_updated = False
|
176 |
if os.path.exists(absolute_kokoro_path):
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
finally:
|
243 |
-
# *** Crucial: Clean up sys.path ***
|
244 |
-
if sys_path_updated:
|
245 |
-
try:
|
246 |
-
if sys.path[0] == absolute_kokoro_path:
|
247 |
-
sys.path.pop(0)
|
248 |
-
print(f"[TTS Setup] Removed {absolute_kokoro_path} from sys.path.")
|
249 |
-
else:
|
250 |
-
# It might have been removed elsewhere, or wasn't at index 0
|
251 |
-
if absolute_kokoro_path in sys.path:
|
252 |
-
sys.path.remove(absolute_kokoro_path)
|
253 |
-
print(f"[TTS Setup] Removed {absolute_kokoro_path} from sys.path (was not index 0).")
|
254 |
-
except Exception as cleanup_err:
|
255 |
-
print(f"[TTS Setup] Warning: Error removing path from sys.path: {cleanup_err}")
|
256 |
else:
|
257 |
print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
|
258 |
|
259 |
except Exception as e:
|
260 |
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
|
261 |
print(traceback.format_exc())
|
262 |
-
TTS_ENABLED = False
|
263 |
-
tts_model = None
|
264 |
-
voicepacks.clear()
|
265 |
|
266 |
-
# Start TTS setup
|
267 |
print("Starting TTS setup thread...")
|
268 |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
269 |
tts_setup_thread.start()
|
270 |
|
271 |
|
272 |
-
# --- Core Logic Functions ---
|
273 |
|
|
|
274 |
@lru_cache(maxsize=128)
|
275 |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
276 |
"""Synchronous web search function with caching."""
|
|
|
277 |
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
|
278 |
try:
|
279 |
with DDGS() as ddgs:
|
280 |
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
|
281 |
print(f"[Web Search] Found {len(results)} results.")
|
282 |
formatted = [{
|
283 |
-
"id": i + 1,
|
284 |
-
"
|
285 |
-
"snippet": res.get("body", "No Snippet"),
|
286 |
-
"url": res.get("href", "#"),
|
287 |
} for i, res in enumerate(results)]
|
288 |
return formatted
|
289 |
except Exception as e:
|
290 |
-
print(f"[Web Search] Error: {e}")
|
291 |
-
# Avoid printing full traceback repeatedly for common network errors maybe
|
292 |
-
return []
|
293 |
|
|
|
294 |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
295 |
-
"""Formats the prompt for the LLM
|
|
|
296 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
297 |
context_str = "\n\n".join(
|
298 |
[f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]
|
299 |
) if context else "No relevant web context found."
|
300 |
-
|
301 |
-
# Using a clear, structured prompt
|
302 |
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}
|
303 |
|
304 |
CONTEXT:
|
@@ -308,67 +271,59 @@ CONTEXT:
|
|
308 |
|
309 |
USER: {html.escape(query)}
|
310 |
|
311 |
-
ASSISTANT:"""
|
312 |
|
|
|
313 |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
314 |
"""Formats search results into HTML for display."""
|
315 |
-
|
316 |
-
|
317 |
items_html = ""
|
318 |
for res in web_results:
|
319 |
title_safe = html.escape(res.get("title", "Source"))
|
320 |
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
|
321 |
-
url = html.escape(res.get("url", "#"))
|
322 |
-
items_html += f"""
|
323 |
-
<div class='source-item'>
|
324 |
-
<div class='source-number'>[{res['id']}]</div>
|
325 |
-
<div class='source-content'>
|
326 |
-
<a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a>
|
327 |
-
<div class='source-snippet'>{snippet_safe}</div>
|
328 |
-
</div>
|
329 |
-
</div>
|
330 |
-
"""
|
331 |
return f"<div class='sources-container'>{items_html}</div>"
|
332 |
|
333 |
-
|
334 |
-
|
|
|
|
|
|
|
335 |
if not llm_model or not llm_tokenizer:
|
336 |
print("[LLM Generate] LLM model or tokenizer not available.")
|
337 |
return "Error: Language Model is not available."
|
338 |
|
339 |
-
print(f"[LLM Generate] Requesting generation (prompt length {len(prompt)})...")
|
340 |
start_time = time.time()
|
341 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
inputs = llm_tokenizer(
|
343 |
-
prompt,
|
344 |
-
|
345 |
-
|
346 |
-
truncation=True,
|
347 |
-
max_length=1024, # Adjust based on model limits
|
348 |
-
return_attention_mask=True
|
349 |
-
).to(llm_model.device)
|
350 |
|
351 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
352 |
-
|
353 |
-
|
354 |
-
llm_model.generate,
|
355 |
inputs.input_ids,
|
356 |
attention_mask=inputs.attention_mask,
|
357 |
max_new_tokens=MAX_NEW_TOKENS,
|
358 |
-
temperature=TEMPERATURE,
|
359 |
-
top_p=TOP_P,
|
360 |
pad_token_id=llm_tokenizer.eos_token_id,
|
361 |
eos_token_id=llm_tokenizer.eos_token_id,
|
362 |
-
do_sample=True,
|
363 |
-
num_return_sequences=1
|
364 |
)
|
365 |
|
366 |
-
# Decode only newly generated tokens
|
367 |
output_ids = outputs[0][inputs.input_ids.shape[1]:]
|
368 |
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
369 |
-
|
370 |
-
if not answer_part:
|
371 |
-
answer_part = "*Model generated an empty response.*"
|
372 |
|
373 |
end_time = time.time()
|
374 |
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
@@ -377,46 +332,45 @@ async def generate_llm_answer(prompt: str) -> str:
|
|
377 |
except Exception as e:
|
378 |
print(f"[LLM Generate] Error: {e}")
|
379 |
print(traceback.format_exc())
|
380 |
-
return f"Error during answer generation: Check logs
|
|
|
381 |
|
382 |
-
|
383 |
-
|
|
|
|
|
384 |
if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
|
385 |
print("[TTS Generate] Skipping: TTS not ready.")
|
386 |
return None
|
387 |
-
if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model
|
388 |
print("[TTS Generate] Skipping: Invalid or empty text.")
|
389 |
return None
|
390 |
|
391 |
-
print(f"[TTS Generate] Requesting speech (length {len(text)}, voice '{voice_id}')...")
|
392 |
start_time = time.time()
|
393 |
|
394 |
try:
|
395 |
actual_voice_id = voice_id
|
396 |
if voice_id not in voicepacks:
|
397 |
-
print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying
|
398 |
actual_voice_id = 'af'
|
399 |
-
if 'af' not in voicepacks:
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
clean_text = re.sub(r'
|
405 |
-
clean_text = re.sub(r'
|
406 |
-
clean_text = re.sub(r'
|
407 |
-
clean_text =
|
408 |
-
clean_text =
|
409 |
-
|
410 |
-
clean_text
|
411 |
-
|
412 |
-
if not clean_text:
|
413 |
-
print("[TTS Generate] Skipping: Text empty after cleaning.")
|
414 |
-
return None
|
415 |
|
416 |
if len(clean_text) > MAX_TTS_CHARS:
|
417 |
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
418 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
419 |
-
last_punct = max(clean_text.rfind(p) for p in '.?!; ')
|
420 |
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
421 |
clean_text += "..."
|
422 |
|
@@ -424,22 +378,39 @@ async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple
|
|
424 |
gen_func = globals()['generate_tts_internal']
|
425 |
voice_pack_data = voicepacks[actual_voice_id]
|
426 |
|
427 |
-
#
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
print("[TTS Generate]
|
440 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
|
442 |
-
|
|
|
|
|
|
|
|
|
443 |
|
444 |
end_time = time.time()
|
445 |
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
|
@@ -450,97 +421,90 @@ async def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple
|
|
450 |
print(traceback.format_exc())
|
451 |
return None
|
452 |
|
|
|
453 |
def get_voice_id_from_display(voice_display_name: str) -> str:
|
454 |
-
|
455 |
-
return VOICE_CHOICES.get(voice_display_name, 'af') # Default to 'af'
|
456 |
|
457 |
|
458 |
-
# --- Gradio Interaction Logic ---
|
459 |
-
ChatHistoryType = List[Dict[str, Optional[str]]]
|
460 |
|
461 |
-
|
462 |
query: str,
|
463 |
history: ChatHistoryType,
|
464 |
selected_voice_display_name: str
|
465 |
-
):
|
466 |
-
"""
|
467 |
-
print(f"\n--- Handling Query ---")
|
468 |
-
query = query.strip()
|
469 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
470 |
|
471 |
if not query:
|
472 |
print("Empty query received.")
|
473 |
-
|
474 |
-
return
|
475 |
|
476 |
-
#
|
477 |
current_history: ChatHistoryType = history + [{"role": "user", "content": query}]
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
status_state = "*Searching...*"
|
484 |
-
sources_state = "<div class='searching'><span>Searching the web...</span></div>"
|
485 |
-
audio_state = None
|
486 |
-
button_state = gr.Button(value="Searching...", interactive=False)
|
487 |
-
|
488 |
-
# 1. Initial State: Searching
|
489 |
-
current_history[-1]["content"] = status_state # Update placeholder
|
490 |
-
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
491 |
-
|
492 |
-
# 2. Perform Web Search (in executor)
|
493 |
-
web_results = await asyncio.get_event_loop().run_in_executor(
|
494 |
-
executor, get_web_results_sync, query
|
495 |
-
)
|
496 |
-
sources_state = format_sources_html(web_results)
|
497 |
-
|
498 |
-
# Update state: Generating Answer
|
499 |
-
status_state = "*Generating answer...*"
|
500 |
-
button_state = gr.Button(value="Generating...", interactive=False)
|
501 |
-
current_history[-1]["content"] = status_state # Update placeholder
|
502 |
-
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
503 |
-
|
504 |
-
# 3. Generate LLM Answer (async)
|
505 |
-
llm_prompt = format_llm_prompt(query, web_results)
|
506 |
-
final_answer = await generate_llm_answer(llm_prompt)
|
507 |
-
status_state = final_answer # Now status holds the actual answer
|
508 |
-
|
509 |
-
# Update assistant message in history fully
|
510 |
-
current_history[-1]["content"] = final_answer
|
511 |
-
|
512 |
-
# Update state: Generating Audio (if applicable)
|
513 |
-
button_state = gr.Button(value="Audio...", interactive=False) if TTS_ENABLED else gr.Button(value="Search", interactive=True)
|
514 |
-
yield chatbot_state, status_state, sources_state, audio_state, button_state
|
515 |
-
|
516 |
-
# 4. Generate TTS Speech (async)
|
517 |
-
tts_status_message = ""
|
518 |
-
if not TTS_ENABLED:
|
519 |
-
if tts_setup_thread.is_alive():
|
520 |
-
tts_status_message = "\n\n*(TTS initializing...)*"
|
521 |
-
else:
|
522 |
-
# Check if setup failed vs just disabled
|
523 |
-
# This info isn't easily available here, assume failed/disabled
|
524 |
-
tts_status_message = "\n\n*(TTS unavailable)*"
|
525 |
-
else:
|
526 |
-
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
527 |
-
audio_state = await generate_tts_speech(final_answer, voice_id) # Returns (rate, data) or None
|
528 |
-
if audio_state is None and not final_answer.startswith("Error"): # Don't show TTS fail if LLM failed
|
529 |
-
tts_status_message = "\n\n*(Audio generation failed)*"
|
530 |
|
531 |
-
#
|
532 |
-
|
533 |
-
|
534 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
535 |
|
536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
537 |
|
538 |
-
|
539 |
-
|
540 |
|
541 |
|
542 |
# --- Gradio UI Definition ---
|
543 |
-
# (CSS
|
544 |
css = """
|
545 |
/* ... [Your existing refined CSS] ... */
|
546 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
@@ -559,7 +523,7 @@ css = """
|
|
559 |
.search-box button:hover { background: #1d4ed8 !important; }
|
560 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
561 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
562 |
-
.answer-box { /* Now used for status/
|
563 |
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
|
564 |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
565 |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
@@ -572,8 +536,8 @@ css = """
|
|
572 |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
573 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
574 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
575 |
-
.chat-history {
|
576 |
-
.chat-history > div { padding: 1rem; }
|
577 |
.chat-history::-webkit-scrollbar { width: 6px; }
|
578 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
579 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
@@ -594,8 +558,6 @@ css = """
|
|
594 |
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
|
595 |
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
596 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
597 |
-
/* .accordion { background: #f9fafb !important; border: 1px solid #e5e7eb !important; border-radius: 8px !important; margin-top: 1rem !important; box-shadow: none !important; } */
|
598 |
-
/* .accordion > .label-wrap { padding: 10px 15px !important; } */
|
599 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
600 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
601 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
@@ -646,8 +608,6 @@ css = """
|
|
646 |
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
|
647 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
648 |
.dark .markdown-content th { background: #374151 !important; }
|
649 |
-
/* .dark .accordion { background: #374151 !important; border-color: #4b5563 !important; } */
|
650 |
-
/* .dark .accordion > .label-wrap { color: #d1d5db !important; } */
|
651 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
652 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
653 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
@@ -660,125 +620,69 @@ css = """
|
|
660 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
661 |
"""
|
662 |
|
663 |
-
with gr.Blocks(title="AI Search Assistant", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
664 |
-
# Use gr.State for chat history in 'messages' format
|
665 |
chat_history_state = gr.State([])
|
666 |
|
667 |
with gr.Column():
|
668 |
-
# Header
|
669 |
with gr.Column(elem_id="header"):
|
670 |
-
gr.Markdown("# ๐ AI Search Assistant")
|
671 |
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
|
|
672 |
|
673 |
-
# Search Area
|
674 |
with gr.Column(elem_classes="search-container"):
|
675 |
with gr.Row(elem_classes="search-box"):
|
676 |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
677 |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
678 |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
679 |
|
680 |
-
# Results Area
|
681 |
with gr.Row(elem_classes="results-container"):
|
682 |
-
# Left Column: Chatbot, Status, Audio
|
683 |
with gr.Column(scale=3):
|
684 |
chatbot_display = gr.Chatbot(
|
685 |
-
label="Conversation",
|
686 |
-
|
687 |
-
|
688 |
-
elem_classes="chat-history",
|
689 |
-
type="messages", # IMPORTANT: Use 'messages' format
|
690 |
-
show_label=False,
|
691 |
-
avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png") # User/Assistant avatars
|
692 |
)
|
|
|
693 |
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
|
694 |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
695 |
|
696 |
-
# Right Column: Sources
|
697 |
with gr.Column(scale=2):
|
698 |
with gr.Column(elem_classes="sources-box"):
|
699 |
gr.Markdown("### Sources")
|
700 |
sources_output_html = gr.HTML(value="<div class='no-sources'>Sources will appear here.</div>")
|
701 |
|
702 |
-
# Examples Area
|
703 |
with gr.Row(elem_classes="examples-container"):
|
704 |
gr.Examples(
|
705 |
-
examples=[
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
"Compare Python and JavaScript for web development",
|
710 |
-
"Summarize the main points of the Paris Agreement",
|
711 |
-
],
|
712 |
-
inputs=search_input,
|
713 |
-
label="Try these examples:",
|
714 |
-
# elem_classes removed
|
715 |
)
|
716 |
|
717 |
-
# --- Event Handling Setup ---
|
718 |
event_inputs = [search_input, chat_history_state, voice_select]
|
719 |
-
event_outputs = [
|
720 |
-
|
721 |
-
answer_status_output, # Output 2: Status/final text
|
722 |
-
sources_output_html, # Output 3: Sources HTML
|
723 |
-
audio_player, # Output 4: Audio data
|
724 |
-
search_btn # Output 5: Button state
|
725 |
-
]
|
726 |
-
|
727 |
-
async def stream_interaction_updates(query, history, voice_display_name):
|
728 |
-
"""Wraps the async generator to handle streaming updates and errors."""
|
729 |
-
print("[Gradio Stream] Starting interaction...")
|
730 |
-
final_state_tuple = None # To store the last successful state
|
731 |
-
try:
|
732 |
-
async for state_update_tuple in handle_interaction(query, history, voice_display_name):
|
733 |
-
yield state_update_tuple # Yield the tuple for Gradio to update outputs
|
734 |
-
final_state_tuple = state_update_tuple # Keep track of the last state
|
735 |
-
print("[Gradio Stream] Interaction completed successfully.")
|
736 |
-
|
737 |
-
except Exception as e:
|
738 |
-
print(f"[Gradio Stream] Error during interaction: {e}")
|
739 |
-
print(traceback.format_exc())
|
740 |
-
# Construct error state to yield
|
741 |
-
error_history = history + [{"role":"user", "content":query}, {"role":"assistant", "content":f"*An error occurred. Please check logs.*"}]
|
742 |
-
error_state_tuple = (
|
743 |
-
error_history,
|
744 |
-
f"An error occurred: {e}",
|
745 |
-
"<div class='error'>Request failed.</div>",
|
746 |
-
None,
|
747 |
-
gr.Button(value="Search", interactive=True) # Ensure button is re-enabled
|
748 |
-
)
|
749 |
-
yield error_state_tuple # Yield the error state to UI
|
750 |
-
final_state_tuple = error_state_tuple # Store error state as last state
|
751 |
-
|
752 |
-
# Optionally clear input ONLY if the interaction finished (success or error)
|
753 |
-
# Requires adding search_input to event_outputs and handling the update dict
|
754 |
-
# Example (if search_input is the 6th output):
|
755 |
-
# if final_state_tuple:
|
756 |
-
# yield (*final_state_tuple, gr.Textbox(value=""))
|
757 |
-
# else: # Handle case where no state was ever yielded (e.g., immediate empty query return)
|
758 |
-
# yield (history, "*Please enter a query.*", "...", None, gr.Button(value="Search", interactive=True), gr.Textbox(value=""))
|
759 |
-
|
760 |
|
761 |
-
# Connect the
|
762 |
search_btn.click(
|
763 |
-
fn=
|
764 |
inputs=event_inputs,
|
765 |
outputs=event_outputs
|
766 |
)
|
767 |
search_input.submit(
|
768 |
-
fn=
|
769 |
inputs=event_inputs,
|
770 |
outputs=event_outputs
|
771 |
)
|
772 |
|
773 |
# --- Main Execution ---
|
774 |
if __name__ == "__main__":
|
775 |
-
print("Starting Gradio application...")
|
776 |
-
#
|
777 |
-
|
778 |
demo.queue(max_size=20).launch(
|
779 |
debug=True,
|
780 |
-
share=True,
|
781 |
-
# server_name="0.0.0.0", # Uncomment to bind to all network interfaces
|
782 |
-
# server_port=7860 # Optional: Specify port
|
783 |
)
|
784 |
print("Gradio application stopped.")
|
|
|
10 |
import numpy as np
|
11 |
from typing import List, Dict, Tuple, Any, Optional, Union
|
12 |
from functools import lru_cache
|
13 |
+
# No asyncio needed for synchronous version
|
14 |
import threading
|
15 |
+
# No ThreadPoolExecutor needed for synchronous version
|
16 |
import warnings
|
17 |
import traceback # For detailed error logging
|
18 |
import re # For text cleaning
|
19 |
import shutil # For checking sudo/file operations
|
20 |
import html # For escaping HTML
|
21 |
import sys # For sys.path manipulation
|
22 |
+
import spaces # <<<--- IMPORT SPACES FOR THE DECORATOR
|
23 |
|
24 |
# --- Configuration ---
|
25 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
26 |
MAX_SEARCH_RESULTS = 5
|
27 |
TTS_SAMPLE_RATE = 24000
|
28 |
+
MAX_TTS_CHARS = 1000
|
29 |
MAX_NEW_TOKENS = 300
|
30 |
TEMPERATURE = 0.7
|
31 |
TOP_P = 0.95
|
32 |
+
KOKORO_PATH = 'Kokoro-82M'
|
33 |
+
# Define expected durations for ZeroGPU decorator
|
34 |
+
LLM_GPU_DURATION = 120 # Seconds (adjust based on expected LLM generation time)
|
35 |
+
TTS_GPU_DURATION = 45 # Seconds (adjust based on expected TTS generation time)
|
36 |
|
37 |
# --- Initialization ---
|
|
|
|
|
|
|
38 |
# Suppress specific warnings
|
39 |
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
|
40 |
warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.")
|
|
|
49 |
llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
50 |
llm_tokenizer.pad_token = llm_tokenizer.eos_token
|
51 |
|
52 |
+
# For ZeroGPU, we assume GPU will be available when needed, load with cuda preference
|
53 |
+
# If running locally without GPU, it might try CPU based on device_map="auto" fallback
|
54 |
+
llm_device = "cuda" if torch.cuda.is_available() else "cpu" # Check initial availability info
|
55 |
+
torch_dtype = torch.float16 if llm_device == "cuda" else torch.float32
|
56 |
+
# device_map="auto" is generally okay, ZeroGPU handles the actual assignment during decorated function call
|
57 |
+
device_map = "auto"
|
58 |
+
print(f"[LLM Init] Preparing model load (target device via ZeroGPU: cuda, dtype={torch_dtype})")
|
|
|
|
|
|
|
59 |
|
60 |
llm_model = AutoModelForCausalLM.from_pretrained(
|
61 |
MODEL_NAME,
|
62 |
+
device_map=device_map, # Let accelerate/ZeroGPU handle placement
|
63 |
low_cpu_mem_usage=True,
|
64 |
torch_dtype=torch_dtype,
|
|
|
65 |
)
|
66 |
+
print(f"[LLM Init] LLM loaded configuration successfully. Ready for GPU assignment via @spaces.GPU.")
|
|
|
|
|
67 |
llm_model.eval()
|
68 |
|
69 |
except Exception as e:
|
|
|
75 |
|
76 |
|
77 |
# --- TTS Initialization ---
|
78 |
+
# (TTS setup remains the same, runs in background)
|
79 |
VOICE_CHOICES = {
|
80 |
'๐บ๐ธ Female (Default)': 'af',
|
81 |
'๐บ๐ธ Bella': 'af_bella',
|
|
|
87 |
voicepacks: Dict[str, Any] = {}
|
88 |
tts_device = "cpu"
|
89 |
|
|
|
90 |
def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess:
|
91 |
"""Runs a subprocess command, captures output, and handles errors."""
|
92 |
print(f"Running command: {' '.join(cmd)}")
|
93 |
try:
|
94 |
result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout)
|
|
|
95 |
if not check or result.returncode != 0:
|
96 |
+
if result.stdout: print(f" Stdout: {result.stdout.strip()}")
|
97 |
+
if result.stderr: print(f" Stderr: {result.stderr.strip()}")
|
98 |
elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd):
|
99 |
+
print(f" Command successful.")
|
100 |
return result
|
101 |
except FileNotFoundError:
|
102 |
print(f" Error: Command not found - {cmd[0]}")
|
|
|
110 |
if e.stderr: print(f" Stderr: {e.stderr.strip()}")
|
111 |
raise
|
112 |
|
|
|
113 |
def setup_tts_task():
|
114 |
"""Initializes Kokoro TTS model and dependencies."""
|
115 |
global TTS_ENABLED, tts_model, voicepacks, tts_device
|
116 |
print("[TTS Setup] Starting background initialization...")
|
117 |
|
118 |
+
# TTS device determination depends on where generate_tts_speech will run.
|
119 |
+
# If decorated with @spaces.GPU, it will use CUDA when called.
|
120 |
+
tts_device = "cuda" # Assume it will run on GPU via decorator
|
121 |
+
print(f"[TTS Setup] Target device for TTS model (via @spaces.GPU): {tts_device}")
|
122 |
|
123 |
can_sudo = shutil.which('sudo') is not None
|
124 |
apt_cmd_prefix = ['sudo'] if can_sudo else []
|
125 |
+
absolute_kokoro_path = os.path.abspath(KOKORO_PATH)
|
126 |
|
127 |
try:
|
128 |
+
# 1. Clone/Update Repo
|
129 |
if not os.path.exists(absolute_kokoro_path):
|
130 |
+
print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...")
|
131 |
+
# (Cloning logic as before)
|
132 |
+
try: _run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo'])
|
133 |
+
except Exception as lfs_err: print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}")
|
134 |
+
_run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path])
|
135 |
+
try: _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path)
|
136 |
+
except Exception as lfs_pull_err: print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}")
|
|
|
|
|
|
|
|
|
137 |
else:
|
138 |
+
print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.")
|
139 |
+
|
140 |
+
# 2. Install espeak
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
print("[TTS Setup] Checking/Installing espeak...")
|
142 |
+
try: # (espeak install logic as before)
|
143 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq'])
|
144 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng'])
|
145 |
+
print("[TTS Setup] espeak-ng installed or already present.")
|
|
|
|
|
146 |
except Exception:
|
147 |
+
print("[TTS Setup] espeak-ng installation failed, trying espeak...")
|
148 |
+
try:
|
149 |
+
_run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak'])
|
150 |
+
print("[TTS Setup] espeak installed or already present.")
|
151 |
+
except Exception as espeak_err:
|
152 |
+
print(f"[TTS Setup] ERROR: Failed to install espeak: {espeak_err}. TTS disabled.")
|
153 |
+
return
|
|
|
154 |
|
155 |
# 3. Load Kokoro Model and Voices
|
156 |
sys_path_updated = False
|
157 |
if os.path.exists(absolute_kokoro_path):
|
158 |
+
print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}")
|
159 |
+
try: print(f"[TTS Setup] Contents: {os.listdir(absolute_kokoro_path)}")
|
160 |
+
except OSError as list_err: print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}")
|
161 |
+
|
162 |
+
if absolute_kokoro_path not in sys.path:
|
163 |
+
sys.path.insert(0, absolute_kokoro_path)
|
164 |
+
sys_path_updated = True
|
165 |
+
print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.")
|
166 |
+
|
167 |
+
try:
|
168 |
+
print("[TTS Setup] Attempting to import Kokoro modules...")
|
169 |
+
from models import build_model
|
170 |
+
from kokoro import generate as generate_tts_internal
|
171 |
+
print("[TTS Setup] Kokoro modules imported successfully.")
|
172 |
+
|
173 |
+
globals()['build_model'] = build_model
|
174 |
+
globals()['generate_tts_internal'] = generate_tts_internal
|
175 |
+
|
176 |
+
model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth')
|
177 |
+
if not os.path.exists(model_file):
|
178 |
+
print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.")
|
179 |
+
return
|
180 |
+
|
181 |
+
# Load model onto CPU initially, ZeroGPU decorator will handle moving/using GPU
|
182 |
+
print(f"[TTS Setup] Loading TTS model config from {model_file} (target device: {tts_device} via @spaces.GPU)...")
|
183 |
+
# Load onto CPU first to avoid issues before GPU is attached.
|
184 |
+
# The build_model function might need adjustment if it forces device placement.
|
185 |
+
# Assuming build_model can load structure then decorator handles device use.
|
186 |
+
# If build_model *requires* device at load, this might need adjustment.
|
187 |
+
tts_model = build_model(model_file, 'cpu') # <<< Load to CPU first
|
188 |
+
tts_model.eval()
|
189 |
+
print("[TTS Setup] TTS model structure loaded (CPU).")
|
190 |
+
|
191 |
+
# Load voices onto CPU
|
192 |
+
loaded_voices = 0
|
193 |
+
for voice_name, voice_id in VOICE_CHOICES.items():
|
194 |
+
voice_file_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt')
|
195 |
+
if os.path.exists(voice_file_path):
|
196 |
+
try:
|
197 |
+
print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name}) to CPU")
|
198 |
+
voicepacks[voice_id] = torch.load(voice_file_path, map_location='cpu') # <<< Load to CPU
|
199 |
+
loaded_voices += 1
|
200 |
+
except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}")
|
201 |
+
else: print(f"[TTS Setup] Info: Voice file {voice_file_path} not found.")
|
202 |
+
|
203 |
+
if loaded_voices == 0:
|
204 |
+
print("[TTS Setup] ERROR: No voicepacks loaded. TTS disabled.")
|
205 |
+
tts_model = None; return
|
206 |
+
|
207 |
+
TTS_ENABLED = True
|
208 |
+
print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}")
|
209 |
+
|
210 |
+
except ImportError as ie:
|
211 |
+
print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.")
|
212 |
+
print(traceback.format_exc())
|
213 |
+
except Exception as load_err:
|
214 |
+
print(f"[TTS Setup] ERROR: Exception during TTS model/voice loading: {load_err}. TTS disabled.")
|
215 |
+
print(traceback.format_exc())
|
216 |
+
finally:
|
217 |
+
if sys_path_updated: # Cleanup sys.path
|
218 |
+
try:
|
219 |
+
if sys.path[0] == absolute_kokoro_path: sys.path.pop(0)
|
220 |
+
elif absolute_kokoro_path in sys.path: sys.path.remove(absolute_kokoro_path)
|
221 |
+
print(f"[TTS Setup] Cleaned up sys.path.")
|
222 |
+
except Exception as cleanup_err: print(f"[TTS Setup] Warning: Error cleaning sys.path: {cleanup_err}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
else:
|
224 |
print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.")
|
225 |
|
226 |
except Exception as e:
|
227 |
print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}")
|
228 |
print(traceback.format_exc())
|
229 |
+
TTS_ENABLED = False; tts_model = None; voicepacks.clear()
|
|
|
|
|
230 |
|
231 |
+
# Start TTS setup thread
|
232 |
print("Starting TTS setup thread...")
|
233 |
tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True)
|
234 |
tts_setup_thread.start()
|
235 |
|
236 |
|
237 |
+
# --- Core Logic Functions (SYNCHRONOUS + @spaces.GPU) ---
|
238 |
|
239 |
+
# Web search remains synchronous
|
240 |
@lru_cache(maxsize=128)
|
241 |
def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]:
|
242 |
"""Synchronous web search function with caching."""
|
243 |
+
# (Implementation remains the same as before)
|
244 |
print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})")
|
245 |
try:
|
246 |
with DDGS() as ddgs:
|
247 |
results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y'))
|
248 |
print(f"[Web Search] Found {len(results)} results.")
|
249 |
formatted = [{
|
250 |
+
"id": i + 1, "title": res.get("title", "No Title"),
|
251 |
+
"snippet": res.get("body", "No Snippet"), "url": res.get("href", "#"),
|
|
|
|
|
252 |
} for i, res in enumerate(results)]
|
253 |
return formatted
|
254 |
except Exception as e:
|
255 |
+
print(f"[Web Search] Error: {e}"); return []
|
|
|
|
|
256 |
|
257 |
+
# Prompt formatting remains the same
|
258 |
def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str:
|
259 |
+
"""Formats the prompt for the LLM."""
|
260 |
+
# (Implementation remains the same as before)
|
261 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
262 |
context_str = "\n\n".join(
|
263 |
[f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context]
|
264 |
) if context else "No relevant web context found."
|
|
|
|
|
265 |
return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time}
|
266 |
|
267 |
CONTEXT:
|
|
|
271 |
|
272 |
USER: {html.escape(query)}
|
273 |
|
274 |
+
ASSISTANT:"""
|
275 |
|
276 |
+
# Source formatting remains the same
|
277 |
def format_sources_html(web_results: List[Dict[str, Any]]) -> str:
|
278 |
"""Formats search results into HTML for display."""
|
279 |
+
# (Implementation remains the same as before)
|
280 |
+
if not web_results: return "<div class='no-sources'>No sources found.</div>"
|
281 |
items_html = ""
|
282 |
for res in web_results:
|
283 |
title_safe = html.escape(res.get("title", "Source"))
|
284 |
snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else ""))
|
285 |
+
url = html.escape(res.get("url", "#"))
|
286 |
+
items_html += f"""<div class='source-item'><div class='source-number'>[{res['id']}]</div><div class='source-content'><a href="{url}" target="_blank" class='source-title' title="{url}">{title_safe}</a><div class='source-snippet'>{snippet_safe}</div></div></div>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
return f"<div class='sources-container'>{items_html}</div>"
|
288 |
|
289 |
+
|
290 |
+
# <<<--- ADD @spaces.GPU decorator AND MAKE SYNCHRONOUS --->>>
|
291 |
+
@spaces.GPU(duration=LLM_GPU_DURATION)
|
292 |
+
def generate_llm_answer(prompt: str) -> str:
|
293 |
+
"""Generates answer using the LLM (Synchronous, GPU-decorated)."""
|
294 |
if not llm_model or not llm_tokenizer:
|
295 |
print("[LLM Generate] LLM model or tokenizer not available.")
|
296 |
return "Error: Language Model is not available."
|
297 |
|
298 |
+
print(f"[LLM Generate] Requesting generation (sync, GPU) (prompt length {len(prompt)})...")
|
299 |
start_time = time.time()
|
300 |
try:
|
301 |
+
# Ensure model is on the GPU (ZeroGPU should handle this)
|
302 |
+
# It might be safer to explicitly move model IF ZeroGPU doesn't guarantee it.
|
303 |
+
# Let's assume ZeroGPU handles the context for now.
|
304 |
+
current_device = next(llm_model.parameters()).device
|
305 |
+
print(f"[LLM Generate] Model currently on device: {current_device}") # Debug device
|
306 |
+
|
307 |
inputs = llm_tokenizer(
|
308 |
+
prompt, return_tensors="pt", padding=True, truncation=True,
|
309 |
+
max_length=1024, return_attention_mask=True
|
310 |
+
).to(current_device) # Send input to model's device
|
|
|
|
|
|
|
|
|
311 |
|
312 |
with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)):
|
313 |
+
# Direct synchronous call
|
314 |
+
outputs = llm_model.generate(
|
|
|
315 |
inputs.input_ids,
|
316 |
attention_mask=inputs.attention_mask,
|
317 |
max_new_tokens=MAX_NEW_TOKENS,
|
318 |
+
temperature=TEMPERATURE, top_p=TOP_P,
|
|
|
319 |
pad_token_id=llm_tokenizer.eos_token_id,
|
320 |
eos_token_id=llm_tokenizer.eos_token_id,
|
321 |
+
do_sample=True, num_return_sequences=1
|
|
|
322 |
)
|
323 |
|
|
|
324 |
output_ids = outputs[0][inputs.input_ids.shape[1]:]
|
325 |
answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
326 |
+
if not answer_part: answer_part = "*Model generated an empty response.*"
|
|
|
|
|
327 |
|
328 |
end_time = time.time()
|
329 |
print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}")
|
|
|
332 |
except Exception as e:
|
333 |
print(f"[LLM Generate] Error: {e}")
|
334 |
print(traceback.format_exc())
|
335 |
+
return f"Error during answer generation: Check logs."
|
336 |
+
|
337 |
|
338 |
+
# <<<--- ADD @spaces.GPU decorator AND MAKE SYNCHRONOUS --->>>
|
339 |
+
@spaces.GPU(duration=TTS_GPU_DURATION)
|
340 |
+
def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]:
|
341 |
+
"""Generates speech using TTS model (Synchronous, GPU-decorated)."""
|
342 |
if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals():
|
343 |
print("[TTS Generate] Skipping: TTS not ready.")
|
344 |
return None
|
345 |
+
if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model"):
|
346 |
print("[TTS Generate] Skipping: Invalid or empty text.")
|
347 |
return None
|
348 |
|
349 |
+
print(f"[TTS Generate] Requesting speech (sync, GPU) (length {len(text)}, voice '{voice_id}')...")
|
350 |
start_time = time.time()
|
351 |
|
352 |
try:
|
353 |
actual_voice_id = voice_id
|
354 |
if voice_id not in voicepacks:
|
355 |
+
print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying 'af'.")
|
356 |
actual_voice_id = 'af'
|
357 |
+
if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af' unavailable."); return None
|
358 |
+
|
359 |
+
# Clean text (same cleaning logic as before)
|
360 |
+
clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text)
|
361 |
+
clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL)
|
362 |
+
clean_text = re.sub(r'`[^`]*`', '', clean_text)
|
363 |
+
clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE)
|
364 |
+
clean_text = re.sub(r'[\*#_]', '', clean_text)
|
365 |
+
clean_text = html.unescape(clean_text)
|
366 |
+
clean_text = ' '.join(clean_text.split())
|
367 |
+
|
368 |
+
if not clean_text: print("[TTS Generate] Skipping: Text empty after cleaning."); return None
|
|
|
|
|
|
|
|
|
369 |
|
370 |
if len(clean_text) > MAX_TTS_CHARS:
|
371 |
print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.")
|
372 |
clean_text = clean_text[:MAX_TTS_CHARS]
|
373 |
+
last_punct = max(clean_text.rfind(p) for p in '.?!; ')
|
374 |
if last_punct != -1: clean_text = clean_text[:last_punct+1]
|
375 |
clean_text += "..."
|
376 |
|
|
|
378 |
gen_func = globals()['generate_tts_internal']
|
379 |
voice_pack_data = voicepacks[actual_voice_id]
|
380 |
|
381 |
+
# *** Crucial for ZeroGPU: Move TTS model and voicepack to CUDA within the decorated function ***
|
382 |
+
current_device = 'cuda' # Assume GPU is attached by decorator
|
383 |
+
try:
|
384 |
+
print(f"[TTS Generate] Moving TTS model to {current_device}...")
|
385 |
+
tts_model.to(current_device)
|
386 |
+
# Move voicepack data (might be a dict of tensors)
|
387 |
+
if isinstance(voice_pack_data, dict):
|
388 |
+
moved_voice_pack = {k: v.to(current_device) if isinstance(v, torch.Tensor) else v for k, v in voice_pack_data.items()}
|
389 |
+
elif isinstance(voice_pack_data, torch.Tensor):
|
390 |
+
moved_voice_pack = voice_pack_data.to(current_device)
|
391 |
+
else:
|
392 |
+
moved_voice_pack = voice_pack_data # Assume not tensors if not dict/tensor
|
393 |
+
print(f"[TTS Generate] TTS model and voicepack on {current_device}.")
|
394 |
+
|
395 |
+
# Direct synchronous call on GPU
|
396 |
+
audio_data, _ = gen_func(tts_model, clean_text, moved_voice_pack, 'afr')
|
397 |
+
|
398 |
+
finally:
|
399 |
+
# *** Optional but recommended: Move model back to CPU to free GPU memory if needed ***
|
400 |
+
# ZeroGPU might handle this, but explicit move-back can be safer if running locally too
|
401 |
+
try:
|
402 |
+
print("[TTS Generate] Moving TTS model back to CPU...")
|
403 |
+
tts_model.to('cpu')
|
404 |
+
# No need to move voicepack back, it's loaded to CPU initially
|
405 |
+
except Exception as move_back_err:
|
406 |
+
print(f"[TTS Generate] Warning: Could not move TTS model back to CPU: {move_back_err}")
|
407 |
+
|
408 |
|
409 |
+
# Process output (remains same)
|
410 |
+
if isinstance(audio_data, torch.Tensor): audio_np = audio_data.detach().cpu().numpy()
|
411 |
+
elif isinstance(audio_data, np.ndarray): audio_np = audio_data
|
412 |
+
else: print("[TTS Generate] Warning: Unexpected audio data type."); return None
|
413 |
+
audio_np = audio_np.flatten().astype(np.float32)
|
414 |
|
415 |
end_time = time.time()
|
416 |
print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}")
|
|
|
421 |
print(traceback.format_exc())
|
422 |
return None
|
423 |
|
424 |
+
# Voice ID mapping remains same
|
425 |
def get_voice_id_from_display(voice_display_name: str) -> str:
|
426 |
+
return VOICE_CHOICES.get(voice_display_name, 'af')
|
|
|
427 |
|
428 |
|
429 |
+
# --- Gradio Interaction Logic (SYNCHRONOUS) ---
|
430 |
+
ChatHistoryType = List[Dict[str, Optional[str]]]
|
431 |
|
432 |
+
def handle_interaction(
|
433 |
query: str,
|
434 |
history: ChatHistoryType,
|
435 |
selected_voice_display_name: str
|
436 |
+
) -> Tuple[ChatHistoryType, str, str, Optional[Tuple[int, np.ndarray]], Any]: # Return type matches outputs
|
437 |
+
"""Synchronous function to handle user queries for ZeroGPU."""
|
438 |
+
print(f"\n--- Handling Query (Sync) ---")
|
439 |
+
query = query.strip()
|
440 |
print(f"Query: '{query}', Voice: '{selected_voice_display_name}'")
|
441 |
|
442 |
if not query:
|
443 |
print("Empty query received.")
|
444 |
+
# Return initial state immediately
|
445 |
+
return history, "*Please enter a non-empty query.*", "<div class='no-sources'>Enter a query to search.</div>", None, gr.Button(value="Search", interactive=True)
|
446 |
|
447 |
+
# Initial state updates (won't be seen until the end in Gradio)
|
448 |
current_history: ChatHistoryType = history + [{"role": "user", "content": query}]
|
449 |
+
current_history.append({"role": "assistant", "content": "*Processing... Please wait.*"}) # Placeholder
|
450 |
+
status_update = "*Processing... Please wait.*"
|
451 |
+
sources_html = "<div class='searching'><span>Searching & Processing...</span></div>"
|
452 |
+
audio_data = None
|
453 |
+
button_update = gr.Button(value="Processing...", interactive=False) # Disabled during processing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
|
455 |
+
# --- Start Blocking Operations ---
|
456 |
+
try:
|
457 |
+
# 1. Perform Web Search (Sync)
|
458 |
+
print("[Handler] Performing web search...")
|
459 |
+
web_results = get_web_results_sync(query)
|
460 |
+
sources_html = format_sources_html(web_results) # Update sources now
|
461 |
+
|
462 |
+
# 2. Generate LLM Answer (Sync, Decorated)
|
463 |
+
print("[Handler] Generating LLM answer...")
|
464 |
+
status_update = "*Generating answer...*" # Update status text
|
465 |
+
# (UI won't update here yet)
|
466 |
+
llm_prompt = format_llm_prompt(query, web_results)
|
467 |
+
final_answer = generate_llm_answer(llm_prompt) # This call triggers GPU attachment
|
468 |
+
status_update = final_answer # Answer generated
|
469 |
+
|
470 |
+
# 3. Generate TTS Speech (Sync, Decorated, Optional)
|
471 |
+
tts_status_message = ""
|
472 |
+
if TTS_ENABLED and not final_answer.startswith("Error"):
|
473 |
+
print("[Handler] Generating TTS speech...")
|
474 |
+
status_update += "\n\n*(Generating audio...)*" # Append status
|
475 |
+
# (UI won't update here yet)
|
476 |
+
voice_id = get_voice_id_from_display(selected_voice_display_name)
|
477 |
+
audio_data = generate_tts_speech(final_answer, voice_id) # This call triggers GPU attachment
|
478 |
+
if audio_data is None:
|
479 |
+
tts_status_message = "\n\n*(Audio generation failed)*"
|
480 |
+
elif not TTS_ENABLED:
|
481 |
+
if tts_setup_thread.is_alive(): tts_status_message = "\n\n*(TTS initializing...)*"
|
482 |
+
else: tts_status_message = "\n\n*(TTS unavailable)*"
|
483 |
+
|
484 |
+
# Combine final answer with status
|
485 |
+
final_answer_with_status = final_answer + tts_status_message
|
486 |
+
status_update = final_answer_with_status
|
487 |
+
current_history[-1]["content"] = final_answer_with_status # Update history
|
488 |
+
|
489 |
+
button_update = gr.Button(value="Search", interactive=True) # Re-enable button
|
490 |
+
print("--- Query Handling Complete (Sync) ---")
|
491 |
|
492 |
+
except Exception as e:
|
493 |
+
print(f"[Handler] Error during processing: {e}")
|
494 |
+
print(traceback.format_exc())
|
495 |
+
error_message = f"*An error occurred: {e}*"
|
496 |
+
current_history[-1]["content"] = error_message # Update history with error
|
497 |
+
status_update = error_message
|
498 |
+
sources_html = "<div class='error'>Request failed.</div>"
|
499 |
+
audio_data = None
|
500 |
+
button_update = gr.Button(value="Search", interactive=True) # Re-enable button on error
|
501 |
|
502 |
+
# Return the final state tuple for all outputs
|
503 |
+
return current_history, status_update, sources_html, audio_data, button_update
|
504 |
|
505 |
|
506 |
# --- Gradio UI Definition ---
|
507 |
+
# (CSS remains the same)
|
508 |
css = """
|
509 |
/* ... [Your existing refined CSS] ... */
|
510 |
.gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; }
|
|
|
523 |
.search-box button:hover { background: #1d4ed8 !important; }
|
524 |
.search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; }
|
525 |
.results-container { background: transparent; padding: 0; margin-top: 1.5rem; }
|
526 |
+
.answer-box { /* Now used for status/final text */ background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;}
|
527 |
.answer-box p { color: #374151; line-height: 1.7; margin:0;}
|
528 |
.answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; }
|
529 |
.sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; }
|
|
|
536 |
.source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;}
|
537 |
.source-title:hover { color: #1d4ed8; text-decoration: underline; }
|
538 |
.source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; }
|
539 |
+
.chat-history { max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; }
|
540 |
+
.chat-history > div { padding: 1rem; }
|
541 |
.chat-history::-webkit-scrollbar { width: 6px; }
|
542 |
.chat-history::-webkit-scrollbar-track { background: #f9fafb; }
|
543 |
.chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; }
|
|
|
558 |
.markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; }
|
559 |
.markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;}
|
560 |
.markdown-content th { background: #f9fafb !important; font-weight: 600; }
|
|
|
|
|
561 |
.voice-selector { margin: 0; padding: 0; height: 100%; }
|
562 |
.voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;}
|
563 |
.voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; }
|
|
|
608 |
.dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; }
|
609 |
.dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; }
|
610 |
.dark .markdown-content th { background: #374151 !important; }
|
|
|
|
|
611 |
.dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;}
|
612 |
.dark .voice-selector select:focus { border-color: #3b82f6 !important; }
|
613 |
.dark .audio-player { background: #374151 !important; border-color: #4b5563;}
|
|
|
620 |
.dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;}
|
621 |
"""
|
622 |
|
623 |
+
with gr.Blocks(title="AI Search Assistant (ZeroGPU Sync)", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo:
|
|
|
624 |
chat_history_state = gr.State([])
|
625 |
|
626 |
with gr.Column():
|
|
|
627 |
with gr.Column(elem_id="header"):
|
628 |
+
gr.Markdown("# ๐ AI Search Assistant (ZeroGPU Version)")
|
629 |
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
630 |
+
gr.Markdown("*(UI will block during processing for ZeroGPU compatibility)*")
|
631 |
|
|
|
632 |
with gr.Column(elem_classes="search-container"):
|
633 |
with gr.Row(elem_classes="search-box"):
|
634 |
search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False)
|
635 |
voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector")
|
636 |
search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100)
|
637 |
|
|
|
638 |
with gr.Row(elem_classes="results-container"):
|
|
|
639 |
with gr.Column(scale=3):
|
640 |
chatbot_display = gr.Chatbot(
|
641 |
+
label="Conversation", bubble_full_width=True, height=500,
|
642 |
+
elem_classes="chat-history", type="messages", show_label=False,
|
643 |
+
avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png")
|
|
|
|
|
|
|
|
|
644 |
)
|
645 |
+
# This Markdown will only show the *final* status/answer text
|
646 |
answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content")
|
647 |
audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player")
|
648 |
|
|
|
649 |
with gr.Column(scale=2):
|
650 |
with gr.Column(elem_classes="sources-box"):
|
651 |
gr.Markdown("### Sources")
|
652 |
sources_output_html = gr.HTML(value="<div class='no-sources'>Sources will appear here.</div>")
|
653 |
|
|
|
654 |
with gr.Row(elem_classes="examples-container"):
|
655 |
gr.Examples(
|
656 |
+
examples=[ "Latest news about renewable energy", "Explain Large Language Models (LLMs)",
|
657 |
+
"Symptoms and prevention tips for the flu", "Compare Python and JavaScript",
|
658 |
+
"Summarize the Paris Agreement", ],
|
659 |
+
inputs=search_input, label="Try these examples:",
|
|
|
|
|
|
|
|
|
|
|
|
|
660 |
)
|
661 |
|
662 |
+
# --- Event Handling Setup (Synchronous) ---
|
663 |
event_inputs = [search_input, chat_history_state, voice_select]
|
664 |
+
event_outputs = [ chatbot_display, answer_status_output, sources_output_html,
|
665 |
+
audio_player, search_btn ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
666 |
|
667 |
+
# Connect the SYNCHRONOUS handle_interaction function directly
|
668 |
search_btn.click(
|
669 |
+
fn=handle_interaction, # Use the synchronous handler
|
670 |
inputs=event_inputs,
|
671 |
outputs=event_outputs
|
672 |
)
|
673 |
search_input.submit(
|
674 |
+
fn=handle_interaction, # Use the synchronous handler
|
675 |
inputs=event_inputs,
|
676 |
outputs=event_outputs
|
677 |
)
|
678 |
|
679 |
# --- Main Execution ---
|
680 |
if __name__ == "__main__":
|
681 |
+
print("Starting Gradio application (Synchronous for ZeroGPU)...")
|
682 |
+
# Ensure TTS setup thread has a chance to start
|
683 |
+
time.sleep(1) # Small delay might help see initial TTS logs
|
684 |
demo.queue(max_size=20).launch(
|
685 |
debug=True,
|
686 |
+
share=True,
|
|
|
|
|
687 |
)
|
688 |
print("Gradio application stopped.")
|