# --- Imports --- import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from duckduckgo_search import DDGS import time import torch from datetime import datetime import os import subprocess import numpy as np from typing import List, Dict, Tuple, Any, Optional, Union from functools import lru_cache # No asyncio needed for synchronous version import threading # No ThreadPoolExecutor needed for synchronous version import warnings import traceback # For detailed error logging import re # For text cleaning import shutil # For checking sudo/file operations import html # For escaping HTML import sys # For sys.path manipulation import spaces # <<<--- IMPORT SPACES FOR THE DECORATOR # --- Configuration --- MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B" MAX_SEARCH_RESULTS = 5 TTS_SAMPLE_RATE = 24000 MAX_TTS_CHARS = 1000 MAX_NEW_TOKENS = 300 TEMPERATURE = 0.7 TOP_P = 0.95 KOKORO_PATH = 'Kokoro-82M' # Define expected durations for ZeroGPU decorator LLM_GPU_DURATION = 120 # Seconds (adjust based on expected LLM generation time) TTS_GPU_DURATION = 45 # Seconds (adjust based on expected TTS generation time) # --- Initialization --- # Suppress specific warnings warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated") warnings.filterwarnings("ignore", message="Backend 'inductor' is not available.") # --- LLM Initialization --- llm_model: Optional[AutoModelForCausalLM] = None llm_tokenizer: Optional[AutoTokenizer] = None llm_device = "cpu" try: print("[LLM Init] Initializing Language Model...") llm_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) llm_tokenizer.pad_token = llm_tokenizer.eos_token # For ZeroGPU, we assume GPU will be available when needed, load with cuda preference # If running locally without GPU, it might try CPU based on device_map="auto" fallback llm_device = "cuda" if torch.cuda.is_available() else "cpu" # Check initial availability info torch_dtype = torch.float16 if llm_device == "cuda" else torch.float32 # device_map="auto" is generally okay, ZeroGPU handles the actual assignment during decorated function call device_map = "auto" print(f"[LLM Init] Preparing model load (target device via ZeroGPU: cuda, dtype={torch_dtype})") llm_model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map=device_map, # Let accelerate/ZeroGPU handle placement low_cpu_mem_usage=True, torch_dtype=torch_dtype, ) print(f"[LLM Init] LLM loaded configuration successfully. Ready for GPU assignment via @spaces.GPU.") llm_model.eval() except Exception as e: print(f"[LLM Init] FATAL: Error initializing LLM model: {str(e)}") print(traceback.format_exc()) llm_model = None llm_tokenizer = None print("[LLM Init] LLM features will be unavailable.") # --- TTS Initialization --- # (TTS setup remains the same, runs in background) VOICE_CHOICES = { 'πŸ‡ΊπŸ‡Έ Female (Default)': 'af', 'πŸ‡ΊπŸ‡Έ Bella': 'af_bella', 'πŸ‡ΊπŸ‡Έ Sarah': 'af_sarah', 'πŸ‡ΊπŸ‡Έ Nicole': 'af_nicole' } TTS_ENABLED = False tts_model: Optional[Any] = None voicepacks: Dict[str, Any] = {} tts_device = "cpu" def _run_subprocess(cmd: List[str], check: bool = True, cwd: Optional[str] = None, timeout: int = 300) -> subprocess.CompletedProcess: """Runs a subprocess command, captures output, and handles errors.""" print(f"Running command: {' '.join(cmd)}") try: result = subprocess.run(cmd, check=check, capture_output=True, text=True, cwd=cwd, timeout=timeout) if not check or result.returncode != 0: if result.stdout: print(f" Stdout: {result.stdout.strip()}") if result.stderr: print(f" Stderr: {result.stderr.strip()}") elif result.returncode == 0 and ('clone' in cmd or 'pull' in cmd or 'install' in cmd): print(f" Command successful.") return result except FileNotFoundError: print(f" Error: Command not found - {cmd[0]}") raise except subprocess.TimeoutExpired: print(f" Error: Command timed out - {' '.join(cmd)}") raise except subprocess.CalledProcessError as e: print(f" Error running command: {' '.join(e.cmd)} (Code: {e.returncode})") if e.stdout: print(f" Stdout: {e.stdout.strip()}") if e.stderr: print(f" Stderr: {e.stderr.strip()}") raise def setup_tts_task(): """Initializes Kokoro TTS model and dependencies.""" global TTS_ENABLED, tts_model, voicepacks, tts_device print("[TTS Setup] Starting background initialization...") # TTS device determination depends on where generate_tts_speech will run. # If decorated with @spaces.GPU, it will use CUDA when called. tts_device = "cuda" # Assume it will run on GPU via decorator print(f"[TTS Setup] Target device for TTS model (via @spaces.GPU): {tts_device}") can_sudo = shutil.which('sudo') is not None apt_cmd_prefix = ['sudo'] if can_sudo else [] absolute_kokoro_path = os.path.abspath(KOKORO_PATH) try: # 1. Clone/Update Repo if not os.path.exists(absolute_kokoro_path): print(f"[TTS Setup] Cloning repository to {absolute_kokoro_path}...") # (Cloning logic as before) try: _run_subprocess(['git', 'lfs', 'install', '--system', '--skip-repo']) except Exception as lfs_err: print(f"[TTS Setup] Warning: git lfs install failed: {lfs_err}") _run_subprocess(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M', absolute_kokoro_path]) try: _run_subprocess(['git', 'lfs', 'pull'], cwd=absolute_kokoro_path) except Exception as lfs_pull_err: print(f"[TTS Setup] Warning: git lfs pull failed: {lfs_pull_err}") else: print(f"[TTS Setup] Directory {absolute_kokoro_path} already exists.") # 2. Install espeak print("[TTS Setup] Checking/Installing espeak...") try: # (espeak install logic as before) _run_subprocess(apt_cmd_prefix + ['apt-get', 'update', '-qq']) _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak-ng']) print("[TTS Setup] espeak-ng installed or already present.") except Exception: print("[TTS Setup] espeak-ng installation failed, trying espeak...") try: _run_subprocess(apt_cmd_prefix + ['apt-get', 'install', '-y', '-qq', 'espeak']) print("[TTS Setup] espeak installed or already present.") except Exception as espeak_err: print(f"[TTS Setup] ERROR: Failed to install espeak: {espeak_err}. TTS disabled.") return # 3. Load Kokoro Model and Voices sys_path_updated = False if os.path.exists(absolute_kokoro_path): print(f"[TTS Setup] Checking contents of: {absolute_kokoro_path}") try: print(f"[TTS Setup] Contents: {os.listdir(absolute_kokoro_path)}") except OSError as list_err: print(f"[TTS Setup] Warning: Could not list directory contents: {list_err}") if absolute_kokoro_path not in sys.path: sys.path.insert(0, absolute_kokoro_path) sys_path_updated = True print(f"[TTS Setup] Temporarily added {absolute_kokoro_path} to sys.path.") try: print("[TTS Setup] Attempting to import Kokoro modules...") from models import build_model from kokoro import generate as generate_tts_internal print("[TTS Setup] Kokoro modules imported successfully.") globals()['build_model'] = build_model globals()['generate_tts_internal'] = generate_tts_internal model_file = os.path.join(absolute_kokoro_path, 'kokoro-v0_19.pth') if not os.path.exists(model_file): print(f"[TTS Setup] ERROR: Model file {model_file} not found. TTS disabled.") return # Load model onto CPU initially, ZeroGPU decorator will handle moving/using GPU print(f"[TTS Setup] Loading TTS model config from {model_file} (target device: {tts_device} via @spaces.GPU)...") # Load onto CPU first to avoid issues before GPU is attached. # The build_model function might need adjustment if it forces device placement. # Assuming build_model can load structure then decorator handles device use. # If build_model *requires* device at load, this might need adjustment. tts_model = build_model(model_file, 'cpu') # <<< Load to CPU first tts_model.eval() print("[TTS Setup] TTS model structure loaded (CPU).") # Load voices onto CPU loaded_voices = 0 for voice_name, voice_id in VOICE_CHOICES.items(): voice_file_path = os.path.join(absolute_kokoro_path, 'voices', f'{voice_id}.pt') if os.path.exists(voice_file_path): try: print(f"[TTS Setup] Loading voice: {voice_id} ({voice_name}) to CPU") voicepacks[voice_id] = torch.load(voice_file_path, map_location='cpu') # <<< Load to CPU loaded_voices += 1 except Exception as e: print(f"[TTS Setup] Warning: Failed to load voice {voice_id}: {str(e)}") else: print(f"[TTS Setup] Info: Voice file {voice_file_path} not found.") if loaded_voices == 0: print("[TTS Setup] ERROR: No voicepacks loaded. TTS disabled.") tts_model = None; return TTS_ENABLED = True print(f"[TTS Setup] Initialization successful. {loaded_voices} voices loaded. TTS Enabled: {TTS_ENABLED}") except ImportError as ie: print(f"[TTS Setup] ERROR: Failed to import Kokoro modules: {ie}.") print(traceback.format_exc()) except Exception as load_err: print(f"[TTS Setup] ERROR: Exception during TTS model/voice loading: {load_err}. TTS disabled.") print(traceback.format_exc()) finally: if sys_path_updated: # Cleanup sys.path try: if sys.path[0] == absolute_kokoro_path: sys.path.pop(0) elif absolute_kokoro_path in sys.path: sys.path.remove(absolute_kokoro_path) print(f"[TTS Setup] Cleaned up sys.path.") except Exception as cleanup_err: print(f"[TTS Setup] Warning: Error cleaning sys.path: {cleanup_err}") else: print(f"[TTS Setup] ERROR: Directory {absolute_kokoro_path} not found. TTS disabled.") except Exception as e: print(f"[TTS Setup] ERROR: Unexpected error during setup: {str(e)}") print(traceback.format_exc()) TTS_ENABLED = False; tts_model = None; voicepacks.clear() # Start TTS setup thread print("Starting TTS setup thread...") tts_setup_thread = threading.Thread(target=setup_tts_task, daemon=True) tts_setup_thread.start() # --- Core Logic Functions (SYNCHRONOUS + @spaces.GPU) --- # Web search remains synchronous @lru_cache(maxsize=128) def get_web_results_sync(query: str, max_results: int = MAX_SEARCH_RESULTS) -> List[Dict[str, Any]]: """Synchronous web search function with caching.""" # (Implementation remains the same as before) print(f"[Web Search] Searching (sync): '{query}' (max_results={max_results})") try: with DDGS() as ddgs: results = list(ddgs.text(query, max_results=max_results, safesearch='moderate', timelimit='y')) print(f"[Web Search] Found {len(results)} results.") formatted = [{ "id": i + 1, "title": res.get("title", "No Title"), "snippet": res.get("body", "No Snippet"), "url": res.get("href", "#"), } for i, res in enumerate(results)] return formatted except Exception as e: print(f"[Web Search] Error: {e}"); return [] # Prompt formatting remains the same def format_llm_prompt(query: str, context: List[Dict[str, Any]]) -> str: """Formats the prompt for the LLM.""" # (Implementation remains the same as before) current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") context_str = "\n\n".join( [f"[{res['id']}] {html.escape(res['title'])}\n{html.escape(res['snippet'])}" for res in context] ) if context else "No relevant web context found." return f"""SYSTEM: You are a helpful AI assistant. Answer the user's query based *only* on the provided web search context. Cite sources using bracket notation like [1], [2]. If the context is insufficient, state that clearly. Use markdown for formatting. Do not add external information. Current Time: {current_time} CONTEXT: --- {context_str} --- USER: {html.escape(query)} ASSISTANT:""" # Source formatting remains the same def format_sources_html(web_results: List[Dict[str, Any]]) -> str: """Formats search results into HTML for display.""" # (Implementation remains the same as before) if not web_results: return "
No sources found.
" items_html = "" for res in web_results: title_safe = html.escape(res.get("title", "Source")) snippet_safe = html.escape(res.get("snippet", "")[:150] + ("..." if len(res.get("snippet", "")) > 150 else "")) url = html.escape(res.get("url", "#")) items_html += f"""
[{res['id']}]
{title_safe}
{snippet_safe}
""" return f"
{items_html}
" # <<<--- ADD @spaces.GPU decorator AND MAKE SYNCHRONOUS --->>> @spaces.GPU(duration=LLM_GPU_DURATION) def generate_llm_answer(prompt: str) -> str: """Generates answer using the LLM (Synchronous, GPU-decorated).""" if not llm_model or not llm_tokenizer: print("[LLM Generate] LLM model or tokenizer not available.") return "Error: Language Model is not available." print(f"[LLM Generate] Requesting generation (sync, GPU) (prompt length {len(prompt)})...") start_time = time.time() try: # Ensure model is on the GPU (ZeroGPU should handle this) # It might be safer to explicitly move model IF ZeroGPU doesn't guarantee it. # Let's assume ZeroGPU handles the context for now. current_device = next(llm_model.parameters()).device print(f"[LLM Generate] Model currently on device: {current_device}") # Debug device inputs = llm_tokenizer( prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024, return_attention_mask=True ).to(current_device) # Send input to model's device with torch.inference_mode(), torch.cuda.amp.autocast(enabled=(llm_model.dtype == torch.float16)): # Direct synchronous call outputs = llm_model.generate( inputs.input_ids, attention_mask=inputs.attention_mask, max_new_tokens=MAX_NEW_TOKENS, temperature=TEMPERATURE, top_p=TOP_P, pad_token_id=llm_tokenizer.eos_token_id, eos_token_id=llm_tokenizer.eos_token_id, do_sample=True, num_return_sequences=1 ) output_ids = outputs[0][inputs.input_ids.shape[1]:] answer_part = llm_tokenizer.decode(output_ids, skip_special_tokens=True).strip() if not answer_part: answer_part = "*Model generated an empty response.*" end_time = time.time() print(f"[LLM Generate] Generation complete in {end_time - start_time:.2f}s. Length: {len(answer_part)}") return answer_part except Exception as e: print(f"[LLM Generate] Error: {e}") print(traceback.format_exc()) return f"Error during answer generation: Check logs." # <<<--- ADD @spaces.GPU decorator AND MAKE SYNCHRONOUS --->>> @spaces.GPU(duration=TTS_GPU_DURATION) def generate_tts_speech(text: str, voice_id: str = 'af') -> Optional[Tuple[int, np.ndarray]]: """Generates speech using TTS model (Synchronous, GPU-decorated).""" if not TTS_ENABLED or not tts_model or 'generate_tts_internal' not in globals(): print("[TTS Generate] Skipping: TTS not ready.") return None if not text or not text.strip() or text.startswith("Error:") or text.startswith("*Model"): print("[TTS Generate] Skipping: Invalid or empty text.") return None print(f"[TTS Generate] Requesting speech (sync, GPU) (length {len(text)}, voice '{voice_id}')...") start_time = time.time() try: actual_voice_id = voice_id if voice_id not in voicepacks: print(f"[TTS Generate] Warning: Voice '{voice_id}' not loaded. Trying 'af'.") actual_voice_id = 'af' if 'af' not in voicepacks: print("[TTS Generate] Error: Default voice 'af' unavailable."); return None # Clean text (same cleaning logic as before) clean_text = re.sub(r'\[\d+\](\[\d+\])*', '', text) clean_text = re.sub(r'```.*?```', '', clean_text, flags=re.DOTALL) clean_text = re.sub(r'`[^`]*`', '', clean_text) clean_text = re.sub(r'^\s*[\*->]\s*', '', clean_text, flags=re.MULTILINE) clean_text = re.sub(r'[\*#_]', '', clean_text) clean_text = html.unescape(clean_text) clean_text = ' '.join(clean_text.split()) if not clean_text: print("[TTS Generate] Skipping: Text empty after cleaning."); return None if len(clean_text) > MAX_TTS_CHARS: print(f"[TTS Generate] Truncating cleaned text from {len(clean_text)} to {MAX_TTS_CHARS} chars.") clean_text = clean_text[:MAX_TTS_CHARS] last_punct = max(clean_text.rfind(p) for p in '.?!; ') if last_punct != -1: clean_text = clean_text[:last_punct+1] clean_text += "..." print(f"[TTS Generate] Generating audio for: '{clean_text[:100]}...'") gen_func = globals()['generate_tts_internal'] voice_pack_data = voicepacks[actual_voice_id] # *** Crucial for ZeroGPU: Move TTS model and voicepack to CUDA within the decorated function *** current_device = 'cuda' # Assume GPU is attached by decorator try: print(f"[TTS Generate] Moving TTS model to {current_device}...") tts_model.to(current_device) # Move voicepack data (might be a dict of tensors) if isinstance(voice_pack_data, dict): moved_voice_pack = {k: v.to(current_device) if isinstance(v, torch.Tensor) else v for k, v in voice_pack_data.items()} elif isinstance(voice_pack_data, torch.Tensor): moved_voice_pack = voice_pack_data.to(current_device) else: moved_voice_pack = voice_pack_data # Assume not tensors if not dict/tensor print(f"[TTS Generate] TTS model and voicepack on {current_device}.") # Direct synchronous call on GPU audio_data, _ = gen_func(tts_model, clean_text, moved_voice_pack, 'afr') finally: # *** Optional but recommended: Move model back to CPU to free GPU memory if needed *** # ZeroGPU might handle this, but explicit move-back can be safer if running locally too try: print("[TTS Generate] Moving TTS model back to CPU...") tts_model.to('cpu') # No need to move voicepack back, it's loaded to CPU initially except Exception as move_back_err: print(f"[TTS Generate] Warning: Could not move TTS model back to CPU: {move_back_err}") # Process output (remains same) if isinstance(audio_data, torch.Tensor): audio_np = audio_data.detach().cpu().numpy() elif isinstance(audio_data, np.ndarray): audio_np = audio_data else: print("[TTS Generate] Warning: Unexpected audio data type."); return None audio_np = audio_np.flatten().astype(np.float32) end_time = time.time() print(f"[TTS Generate] Audio generated in {end_time - start_time:.2f}s. Shape: {audio_np.shape}") return (TTS_SAMPLE_RATE, audio_np) except Exception as e: print(f"[TTS Generate] Error: {str(e)}") print(traceback.format_exc()) return None # Voice ID mapping remains same def get_voice_id_from_display(voice_display_name: str) -> str: return VOICE_CHOICES.get(voice_display_name, 'af') # --- Gradio Interaction Logic (SYNCHRONOUS) --- ChatHistoryType = List[Dict[str, Optional[str]]] def handle_interaction( query: str, history: ChatHistoryType, selected_voice_display_name: str ) -> Tuple[ChatHistoryType, str, str, Optional[Tuple[int, np.ndarray]], Any]: # Return type matches outputs """Synchronous function to handle user queries for ZeroGPU.""" print(f"\n--- Handling Query (Sync) ---") query = query.strip() print(f"Query: '{query}', Voice: '{selected_voice_display_name}'") if not query: print("Empty query received.") # Return initial state immediately return history, "*Please enter a non-empty query.*", "
Enter a query to search.
", None, gr.Button(value="Search", interactive=True) # Initial state updates (won't be seen until the end in Gradio) current_history: ChatHistoryType = history + [{"role": "user", "content": query}] current_history.append({"role": "assistant", "content": "*Processing... Please wait.*"}) # Placeholder status_update = "*Processing... Please wait.*" sources_html = "
Searching & Processing...
" audio_data = None button_update = gr.Button(value="Processing...", interactive=False) # Disabled during processing # --- Start Blocking Operations --- try: # 1. Perform Web Search (Sync) print("[Handler] Performing web search...") web_results = get_web_results_sync(query) sources_html = format_sources_html(web_results) # Update sources now # 2. Generate LLM Answer (Sync, Decorated) print("[Handler] Generating LLM answer...") status_update = "*Generating answer...*" # Update status text # (UI won't update here yet) llm_prompt = format_llm_prompt(query, web_results) final_answer = generate_llm_answer(llm_prompt) # This call triggers GPU attachment status_update = final_answer # Answer generated # 3. Generate TTS Speech (Sync, Decorated, Optional) tts_status_message = "" if TTS_ENABLED and not final_answer.startswith("Error"): print("[Handler] Generating TTS speech...") status_update += "\n\n*(Generating audio...)*" # Append status # (UI won't update here yet) voice_id = get_voice_id_from_display(selected_voice_display_name) audio_data = generate_tts_speech(final_answer, voice_id) # This call triggers GPU attachment if audio_data is None: tts_status_message = "\n\n*(Audio generation failed)*" elif not TTS_ENABLED: if tts_setup_thread.is_alive(): tts_status_message = "\n\n*(TTS initializing...)*" else: tts_status_message = "\n\n*(TTS unavailable)*" # Combine final answer with status final_answer_with_status = final_answer + tts_status_message status_update = final_answer_with_status current_history[-1]["content"] = final_answer_with_status # Update history button_update = gr.Button(value="Search", interactive=True) # Re-enable button print("--- Query Handling Complete (Sync) ---") except Exception as e: print(f"[Handler] Error during processing: {e}") print(traceback.format_exc()) error_message = f"*An error occurred: {e}*" current_history[-1]["content"] = error_message # Update history with error status_update = error_message sources_html = "
Request failed.
" audio_data = None button_update = gr.Button(value="Search", interactive=True) # Re-enable button on error # Return the final state tuple for all outputs return current_history, status_update, sources_html, audio_data, button_update # --- Gradio UI Definition --- # (CSS remains the same) css = """ /* ... [Your existing refined CSS] ... */ .gradio-container { max-width: 1200px !important; background-color: #f7f7f8 !important; } #header { text-align: center; margin-bottom: 2rem; padding: 2rem 0; background: linear-gradient(135deg, #1a1b1e, #2d2e32); border-radius: 12px; color: white; box-shadow: 0 8px 32px rgba(0,0,0,0.2); } #header h1 { color: white; font-size: 2.5rem; margin-bottom: 0.5rem; text-shadow: 0 2px 4px rgba(0,0,0,0.3); } #header h3 { color: #a8a9ab; } .search-container { background: #ffffff; border: 1px solid #e0e0e0; border-radius: 12px; box-shadow: 0 4px 16px rgba(0,0,0,0.05); padding: 1.5rem; margin-bottom: 1.5rem; } .search-box { padding: 0; margin-bottom: 1rem; display: flex; align-items: center; } .search-box .gradio-textbox { border-radius: 8px 0 0 8px !important; height: 44px !important; flex-grow: 1; } .search-box .gradio-dropdown { border-radius: 0 !important; margin-left: -1px; margin-right: -1px; height: 44px !important; width: 180px; flex-shrink: 0; } .search-box .gradio-button { border-radius: 0 8px 8px 0 !important; height: 44px !important; flex-shrink: 0; } .search-box input[type="text"] { background: #f7f7f8 !important; border: 1px solid #d1d5db !important; color: #1f2937 !important; transition: all 0.3s ease; height: 100% !important; padding: 0 12px !important;} .search-box input[type="text"]:focus { border-color: #2563eb !important; box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.2) !important; background: white !important; z-index: 1; } .search-box input[type="text"]::placeholder { color: #9ca3af !important; } .search-box button { background: #2563eb !important; border: none !important; color: white !important; box-shadow: 0 1px 2px rgba(0,0,0,0.05) !important; transition: all 0.3s ease !important; height: 100% !important; } .search-box button:hover { background: #1d4ed8 !important; } .search-box button:disabled { background: #9ca3af !important; cursor: not-allowed; } .results-container { background: transparent; padding: 0; margin-top: 1.5rem; } .answer-box { /* Now used for status/final text */ background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1rem; color: #1f2937; margin-bottom: 0.5rem; box-shadow: 0 2px 8px rgba(0,0,0,0.05); min-height: 50px;} .answer-box p { color: #374151; line-height: 1.7; margin:0;} .answer-box code { background: #f3f4f6; border-radius: 4px; padding: 2px 4px; color: #4b5563; font-size: 0.9em; } .sources-box { background: white; border: 1px solid #e0e0e0; border-radius: 10px; padding: 1.5rem; } .sources-box h3 { margin-top: 0; margin-bottom: 1rem; color: #111827; font-size: 1.2rem; } .sources-container { margin-top: 0; } .source-item { display: flex; padding: 10px 0; margin: 0; border-bottom: 1px solid #f3f4f6; transition: background-color 0.2s; } .source-item:last-child { border-bottom: none; } .source-number { font-weight: bold; margin-right: 12px; color: #6b7280; width: 20px; text-align: right; flex-shrink: 0;} .source-content { flex: 1; min-width: 0;} /* Allow content to shrink */ .source-title { color: #2563eb; font-weight: 500; text-decoration: none; display: block; margin-bottom: 4px; transition: all 0.2s; font-size: 0.95em; white-space: nowrap; overflow: hidden; text-overflow: ellipsis;} .source-title:hover { color: #1d4ed8; text-decoration: underline; } .source-snippet { color: #4b5563; font-size: 0.9em; line-height: 1.5; } .chat-history { max-height: 500px; overflow-y: auto; background: #f9fafb; border: 1px solid #e5e7eb; border-radius: 8px; scrollbar-width: thin; scrollbar-color: #d1d5db #f9fafb; } .chat-history > div { padding: 1rem; } .chat-history::-webkit-scrollbar { width: 6px; } .chat-history::-webkit-scrollbar-track { background: #f9fafb; } .chat-history::-webkit-scrollbar-thumb { background-color: #d1d5db; border-radius: 20px; } .examples-container { background: #f9fafb; border-radius: 8px; padding: 1rem; margin-top: 1rem; border: 1px solid #e5e7eb; } .examples-container button { background: white !important; border: 1px solid #d1d5db !important; color: #374151 !important; transition: all 0.2s; margin: 4px !important; font-size: 0.9em !important; padding: 6px 12px !important; border-radius: 4px !important; } .examples-container button:hover { background: #f3f4f6 !important; border-color: #adb5bd !important; } .markdown-content { color: #374151 !important; font-size: 1rem; line-height: 1.7; } .markdown-content h1, .markdown-content h2, .markdown-content h3 { color: #111827 !important; margin-top: 1.2em !important; margin-bottom: 0.6em !important; font-weight: 600; } .markdown-content h1 { font-size: 1.6em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em; } .markdown-content h2 { font-size: 1.4em !important; border-bottom: 1px solid #e5e7eb; padding-bottom: 0.3em;} .markdown-content h3 { font-size: 1.2em !important; } .markdown-content a { color: #2563eb !important; text-decoration: none !important; transition: all 0.2s; } .markdown-content a:hover { color: #1d4ed8 !important; text-decoration: underline !important; } .markdown-content code { background: #f3f4f6 !important; padding: 2px 6px !important; border-radius: 4px !important; font-family: monospace !important; color: #4b5563; font-size: 0.9em; } .markdown-content pre { background: #f3f4f6 !important; padding: 12px !important; border-radius: 8px !important; overflow-x: auto !important; border: 1px solid #e5e7eb;} .markdown-content pre code { background: transparent !important; padding: 0 !important; border: none !important; font-size: 0.9em;} .markdown-content blockquote { border-left: 4px solid #d1d5db !important; padding-left: 1em !important; margin-left: 0 !important; color: #6b7280 !important; } .markdown-content table { border-collapse: collapse !important; width: 100% !important; margin: 1em 0; } .markdown-content th, .markdown-content td { padding: 8px 12px !important; border: 1px solid #d1d5db !important; text-align: left;} .markdown-content th { background: #f9fafb !important; font-weight: 600; } .voice-selector { margin: 0; padding: 0; height: 100%; } .voice-selector div[data-testid="dropdown"] { height: 100% !important; border-radius: 0 !important;} .voice-selector select { background: white !important; color: #374151 !important; border: 1px solid #d1d5db !important; border-left: none !important; border-right: none !important; border-radius: 0 !important; height: 100% !important; padding: 0 10px !important; transition: all 0.2s; appearance: none !important; -webkit-appearance: none !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%236b7280' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important; background-position: right 0.5rem center !important; background-repeat: no-repeat !important; background-size: 1.5em 1.5em !important; padding-right: 2.5rem !important; } .voice-selector select:focus { border-color: #2563eb !important; box-shadow: none !important; z-index: 1; position: relative;} .audio-player { margin-top: 1rem; background: #f9fafb !important; border-radius: 8px !important; padding: 0.5rem !important; border: 1px solid #e5e7eb;} .audio-player audio { width: 100% !important; } .searching, .error { padding: 1rem; border-radius: 8px; text-align: center; margin: 1rem 0; border: 1px dashed; } .searching { background: #eff6ff; color: #3b82f6; border-color: #bfdbfe; } .error { background: #fef2f2; color: #ef4444; border-color: #fecaca; } .no-sources { padding: 1rem; text-align: center; color: #6b7280; background: #f9fafb; border-radius: 8px; border: 1px solid #e5e7eb;} @keyframes pulse { 0% { opacity: 0.7; } 50% { opacity: 1; } 100% { opacity: 0.7; } } .searching span { animation: pulse 1.5s infinite ease-in-out; display: inline-block; } /* Dark Mode Styles */ .dark .gradio-container { background-color: #111827 !important; } .dark #header { background: linear-gradient(135deg, #1f2937, #374151); } .dark #header h3 { color: #9ca3af; } .dark .search-container { background: #1f2937; border-color: #374151; } .dark .search-box input[type="text"] { background: #374151 !important; border-color: #4b5563 !important; color: #e5e7eb !important; } .dark .search-box input[type="text"]:focus { border-color: #3b82f6 !important; background: #4b5563 !important; box-shadow: 0 0 0 2px rgba(59, 130, 246, 0.3) !important; } .dark .search-box input[type="text"]::placeholder { color: #9ca3af !important; } .dark .search-box button { background: #3b82f6 !important; } .dark .search-box button:hover { background: #2563eb !important; } .dark .search-box button:disabled { background: #4b5563 !important; } .dark .answer-box { background: #1f2937; border-color: #374151; color: #e5e7eb; } .dark .answer-box p { color: #d1d5db; } .dark .answer-box code { background: #374151; color: #9ca3af; } .dark .sources-box { background: #1f2937; border-color: #374151; } .dark .sources-box h3 { color: #f9fafb; } .dark .source-item { border-bottom-color: #374151; } .dark .source-item:hover { background-color: #374151; } .dark .source-number { color: #9ca3af; } .dark .source-title { color: #60a5fa; } .dark .source-title:hover { color: #93c5fd; } .dark .source-snippet { color: #d1d5db; } .dark .chat-history { background: #374151; border-color: #4b5563; scrollbar-color: #4b5563 #374151; color: #d1d5db;} .dark .chat-history::-webkit-scrollbar-track { background: #374151; } .dark .chat-history::-webkit-scrollbar-thumb { background-color: #4b5563; } .dark .examples-container { background: #374151; border-color: #4b5563; } .dark .examples-container button { background: #1f2937 !important; border-color: #4b5563 !important; color: #d1d5db !important; } .dark .examples-container button:hover { background: #4b5563 !important; border-color: #6b7280 !important; } .dark .markdown-content { color: #d1d5db !important; } .dark .markdown-content h1, .dark .markdown-content h2, .dark .markdown-content h3 { color: #f9fafb !important; border-bottom-color: #4b5563; } .dark .markdown-content a { color: #60a5fa !important; } .dark .markdown-content a:hover { color: #93c5fd !important; } .dark .markdown-content code { background: #374151 !important; color: #9ca3af; } .dark .markdown-content pre { background: #374151 !important; border-color: #4b5563;} .dark .markdown-content pre code { background: transparent !important; } .dark .markdown-content blockquote { border-left-color: #4b5563 !important; color: #9ca3af !important; } .dark .markdown-content th, .dark .markdown-content td { border-color: #4b5563 !important; } .dark .markdown-content th { background: #374151 !important; } .dark .voice-selector select { background: #1f2937 !important; color: #d1d5db !important; border-color: #4b5563 !important; background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' fill='none' viewBox='0 0 20 20'%3e%3cpath stroke='%239ca3af' stroke-linecap='round' stroke-linejoin='round' stroke-width='1.5' d='M6 8l4 4 4-4'/%3e%3c/svg%3e") !important;} .dark .voice-selector select:focus { border-color: #3b82f6 !important; } .dark .audio-player { background: #374151 !important; border-color: #4b5563;} .dark .audio-player audio::-webkit-media-controls-panel { background-color: #374151; } .dark .audio-player audio::-webkit-media-controls-play-button { color: #d1d5db; } .dark .audio-player audio::-webkit-media-controls-current-time-display { color: #9ca3af; } .dark .audio-player audio::-webkit-media-controls-time-remaining-display { color: #9ca3af; } .dark .searching { background: #1e3a8a; color: #93c5fd; border-color: #3b82f6; } .dark .error { background: #7f1d1d; color: #fca5a5; border-color: #ef4444; } .dark .no-sources { background: #374151; color: #9ca3af; border-color: #4b5563;} """ with gr.Blocks(title="AI Search Assistant (ZeroGPU Sync)", css=css, theme=gr.themes.Default(primary_hue="blue")) as demo: chat_history_state = gr.State([]) with gr.Column(): with gr.Column(elem_id="header"): gr.Markdown("# πŸ” AI Search Assistant (ZeroGPU Version)") gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice") gr.Markdown("*(UI will block during processing for ZeroGPU compatibility)*") with gr.Column(elem_classes="search-container"): with gr.Row(elem_classes="search-box"): search_input = gr.Textbox(label="", placeholder="Ask anything...", scale=5, container=False) voice_select = gr.Dropdown(choices=list(VOICE_CHOICES.keys()), value=list(VOICE_CHOICES.keys())[0], label="", scale=1, min_width=180, container=False, elem_classes="voice-selector") search_btn = gr.Button("Search", variant="primary", scale=0, min_width=100) with gr.Row(elem_classes="results-container"): with gr.Column(scale=3): chatbot_display = gr.Chatbot( label="Conversation", bubble_full_width=True, height=500, elem_classes="chat-history", type="messages", show_label=False, avatar_images=(None, os.path.join(KOKORO_PATH, "icon.png") if os.path.exists(os.path.join(KOKORO_PATH, "icon.png")) else "https://huggingface.co/spaces/gradio/chatbot-streaming/resolve/main/avatar.png") ) # This Markdown will only show the *final* status/answer text answer_status_output = gr.Markdown(value="*Enter a query to start.*", elem_classes="answer-box markdown-content") audio_player = gr.Audio(label="Voice Response", type="numpy", autoplay=False, show_label=False, elem_classes="audio-player") with gr.Column(scale=2): with gr.Column(elem_classes="sources-box"): gr.Markdown("### Sources") sources_output_html = gr.HTML(value="
Sources will appear here.
") with gr.Row(elem_classes="examples-container"): gr.Examples( examples=[ "Latest news about renewable energy", "Explain Large Language Models (LLMs)", "Symptoms and prevention tips for the flu", "Compare Python and JavaScript", "Summarize the Paris Agreement", ], inputs=search_input, label="Try these examples:", ) # --- Event Handling Setup (Synchronous) --- event_inputs = [search_input, chat_history_state, voice_select] event_outputs = [ chatbot_display, answer_status_output, sources_output_html, audio_player, search_btn ] # Connect the SYNCHRONOUS handle_interaction function directly search_btn.click( fn=handle_interaction, # Use the synchronous handler inputs=event_inputs, outputs=event_outputs ) search_input.submit( fn=handle_interaction, # Use the synchronous handler inputs=event_inputs, outputs=event_outputs ) # --- Main Execution --- if __name__ == "__main__": print("Starting Gradio application (Synchronous for ZeroGPU)...") # Ensure TTS setup thread has a chance to start time.sleep(1) # Small delay might help see initial TTS logs demo.queue(max_size=20).launch( debug=True, share=True, ) print("Gradio application stopped.")