Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import cv2 | |
import os | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
# Load the Mask R-CNN model | |
model_path = os.path.join('toolkit', 'condmodel_100.h5') # Path to your model | |
mask_rcnn_model = load_model(model_path) | |
def apply_mask_rcnn(image): | |
""" | |
Function to apply the Mask R-CNN model and return the segmented image. | |
:param image: Input image in numpy array format | |
:return: Image with segmentation mask overlaid | |
""" | |
try: | |
# Convert image to RGB (in case of RGBA or grayscale) | |
if image.shape[2] == 4: # Convert RGBA to RGB | |
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB) | |
# Resize the image to the input size of the model | |
resized_image = cv2.resize(image, (224, 224)) # Adjust according to model input size | |
input_image = np.expand_dims(resized_image, axis=0) | |
# Use Mask R-CNN to predict the mask | |
prediction = mask_rcnn_model.predict(input_image) | |
# Assuming the first output is the mask, you may need to adjust based on your model's structure | |
mask = prediction[0] | |
mask = np.squeeze(mask) # Remove any unnecessary dimensions | |
# Resize mask back to the original image size | |
mask = cv2.resize(mask, (image.shape[1], image.shape[0])) | |
# Create a segmentation overlay on the original image | |
mask_overlay = np.zeros_like(image) | |
mask_overlay[mask > 0.5] = [0, 255, 0] # Green mask | |
# Combine the original image with the mask | |
segmented_image = cv2.addWeighted(image, 1, mask_overlay, 0.5, 0) | |
return segmented_image | |
except Exception as e: | |
print(f"Error in segmentation: {e}") | |
return image # Return original image if segmentation fails | |
# Update Gradio interface for image input/output | |
inputs = gr.Image(source="upload", tool="editor", type="numpy", label="Upload an image") | |
outputs = gr.Image(type="numpy", label="Segmented Image") | |
# Gradio interface definition | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1 style='text-align: center;'>Image Segmentation with Mask R-CNN</h1>") | |
gr.Markdown("Upload an image to see segmentation results using the Mask R-CNN model.") | |
# Input and output components | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Upload an Image") | |
inputs.render() # Render the input (image upload) | |
# Submit button | |
gr.Button("Submit").click(fn=apply_mask_rcnn, inputs=inputs, outputs=outputs) | |
gr.Button("Clear").click(fn=lambda: None) | |
with gr.Column(): | |
gr.Markdown("### Segmented Image Output") | |
outputs.render() # Render the output (segmented image) | |
# Launch the Gradio app | |
demo.launch() | |