File size: 2,788 Bytes
1d2e742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
import numpy as np
import cv2
import os
import tensorflow as tf
from tensorflow.keras.models import load_model

# Load the Mask R-CNN model
model_path = os.path.join('toolkit', 'condmodel_100.h5')  # Path to your model
mask_rcnn_model = load_model(model_path)

def apply_mask_rcnn(image):
    """
    Function to apply the Mask R-CNN model and return the segmented image.
    :param image: Input image in numpy array format
    :return: Image with segmentation mask overlaid
    """
    try:
        # Convert image to RGB (in case of RGBA or grayscale)
        if image.shape[2] == 4:  # Convert RGBA to RGB
            image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)

        # Resize the image to the input size of the model
        resized_image = cv2.resize(image, (224, 224))  # Adjust according to model input size
        input_image = np.expand_dims(resized_image, axis=0)

        # Use Mask R-CNN to predict the mask
        prediction = mask_rcnn_model.predict(input_image)

        # Assuming the first output is the mask, you may need to adjust based on your model's structure
        mask = prediction[0]
        mask = np.squeeze(mask)  # Remove any unnecessary dimensions

        # Resize mask back to the original image size
        mask = cv2.resize(mask, (image.shape[1], image.shape[0]))

        # Create a segmentation overlay on the original image
        mask_overlay = np.zeros_like(image)
        mask_overlay[mask > 0.5] = [0, 255, 0]  # Green mask

        # Combine the original image with the mask
        segmented_image = cv2.addWeighted(image, 1, mask_overlay, 0.5, 0)

        return segmented_image

    except Exception as e:
        print(f"Error in segmentation: {e}")
        return image  # Return original image if segmentation fails

# Update Gradio interface for image input/output
inputs = gr.Image(source="upload", tool="editor", type="numpy", label="Upload an image")
outputs = gr.Image(type="numpy", label="Segmented Image")

# Gradio interface definition
with gr.Blocks() as demo:
    gr.Markdown("<h1 style='text-align: center;'>Image Segmentation with Mask R-CNN</h1>")
    gr.Markdown("Upload an image to see segmentation results using the Mask R-CNN model.")
    
    # Input and output components
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Upload an Image")
            inputs.render()  # Render the input (image upload)

            # Submit button
            gr.Button("Submit").click(fn=apply_mask_rcnn, inputs=inputs, outputs=outputs)
            gr.Button("Clear").click(fn=lambda: None)

        with gr.Column():
            gr.Markdown("### Segmented Image Output")
            outputs.render()  # Render the output (segmented image)

# Launch the Gradio app
demo.launch()