Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import os
|
5 |
+
import tensorflow as tf
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
|
8 |
+
# Load the Mask R-CNN model
|
9 |
+
model_path = os.path.join('toolkit', 'condmodel_100.h5') # Path to your model
|
10 |
+
mask_rcnn_model = load_model(model_path)
|
11 |
+
|
12 |
+
def apply_mask_rcnn(image):
|
13 |
+
"""
|
14 |
+
Function to apply the Mask R-CNN model and return the segmented image.
|
15 |
+
:param image: Input image in numpy array format
|
16 |
+
:return: Image with segmentation mask overlaid
|
17 |
+
"""
|
18 |
+
try:
|
19 |
+
# Convert image to RGB (in case of RGBA or grayscale)
|
20 |
+
if image.shape[2] == 4: # Convert RGBA to RGB
|
21 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGBA2RGB)
|
22 |
+
|
23 |
+
# Resize the image to the input size of the model
|
24 |
+
resized_image = cv2.resize(image, (224, 224)) # Adjust according to model input size
|
25 |
+
input_image = np.expand_dims(resized_image, axis=0)
|
26 |
+
|
27 |
+
# Use Mask R-CNN to predict the mask
|
28 |
+
prediction = mask_rcnn_model.predict(input_image)
|
29 |
+
|
30 |
+
# Assuming the first output is the mask, you may need to adjust based on your model's structure
|
31 |
+
mask = prediction[0]
|
32 |
+
mask = np.squeeze(mask) # Remove any unnecessary dimensions
|
33 |
+
|
34 |
+
# Resize mask back to the original image size
|
35 |
+
mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
|
36 |
+
|
37 |
+
# Create a segmentation overlay on the original image
|
38 |
+
mask_overlay = np.zeros_like(image)
|
39 |
+
mask_overlay[mask > 0.5] = [0, 255, 0] # Green mask
|
40 |
+
|
41 |
+
# Combine the original image with the mask
|
42 |
+
segmented_image = cv2.addWeighted(image, 1, mask_overlay, 0.5, 0)
|
43 |
+
|
44 |
+
return segmented_image
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
print(f"Error in segmentation: {e}")
|
48 |
+
return image # Return original image if segmentation fails
|
49 |
+
|
50 |
+
# Update Gradio interface for image input/output
|
51 |
+
inputs = gr.Image(source="upload", tool="editor", type="numpy", label="Upload an image")
|
52 |
+
outputs = gr.Image(type="numpy", label="Segmented Image")
|
53 |
+
|
54 |
+
# Gradio interface definition
|
55 |
+
with gr.Blocks() as demo:
|
56 |
+
gr.Markdown("<h1 style='text-align: center;'>Image Segmentation with Mask R-CNN</h1>")
|
57 |
+
gr.Markdown("Upload an image to see segmentation results using the Mask R-CNN model.")
|
58 |
+
|
59 |
+
# Input and output components
|
60 |
+
with gr.Row():
|
61 |
+
with gr.Column():
|
62 |
+
gr.Markdown("### Upload an Image")
|
63 |
+
inputs.render() # Render the input (image upload)
|
64 |
+
|
65 |
+
# Submit button
|
66 |
+
gr.Button("Submit").click(fn=apply_mask_rcnn, inputs=inputs, outputs=outputs)
|
67 |
+
gr.Button("Clear").click(fn=lambda: None)
|
68 |
+
|
69 |
+
with gr.Column():
|
70 |
+
gr.Markdown("### Segmented Image Output")
|
71 |
+
outputs.render() # Render the output (segmented image)
|
72 |
+
|
73 |
+
# Launch the Gradio app
|
74 |
+
demo.launch()
|