File size: 8,288 Bytes
57517e4
 
 
 
 
 
 
 
 
0781dee
57517e4
0781dee
 
1770619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0781dee
 
57517e4
0781dee
 
 
 
 
 
 
57517e4
0781dee
 
57517e4
0781dee
 
 
 
57517e4
0781dee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfaeaf8
0781dee
 
 
57517e4
 
0781dee
57517e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0781dee
 
 
 
 
 
 
57517e4
 
 
0781dee
 
57517e4
 
 
 
 
 
 
 
 
 
 
 
0781dee
 
 
 
 
57517e4
 
 
 
 
 
 
 
0781dee
 
57517e4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import gradio as gr
import numpy as np
import json
import joblib
import tensorflow as tf
import pandas as pd
from joblib import load
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import os
import sklearn

# Display library versions
print(f"Gradio version: {gr.__version__}")
print(f"NumPy version: {np.__version__}")
print(f"Scikit-learn version: {sklearn.__version__}")
print(f"Joblib version: {joblib.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"Pandas version: {pd.__version__}")

# Directory paths for the saved models
script_dir = os.path.dirname(os.path.abspath(__file__))
scaler_path = os.path.join(script_dir, 'toolkit', 'scaler_X.json')
rf_model_path = os.path.join(script_dir, 'toolkit', 'rf_model.joblib')
mlp_model_path = os.path.join(script_dir, 'toolkit', 'mlp_model.keras')
meta_model_path = os.path.join(script_dir, 'toolkit', 'meta_model.joblib')
image_path = os.path.join(script_dir, 'toolkit', 'car.png')

# Load the scaler and models
try:
    # Load the scaler
    with open(scaler_path, 'r') as f:
        scaler_params = json.load(f)
    scaler_X = MinMaxScaler()
    scaler_X.scale_ = np.array(scaler_params["scale_"])
    scaler_X.min_ = np.array(scaler_params["min_"])
    scaler_X.data_min_ = np.array(scaler_params["data_min_"])
    scaler_X.data_max_ = np.array(scaler_params["data_max_"])
    scaler_X.data_range_ = np.array(scaler_params["data_range_"])
    scaler_X.n_features_in_ = scaler_params["n_features_in_"]
    scaler_X.feature_names_in_ = np.array(scaler_params["feature_names_in_"])

    # Load the models
    loaded_rf_model = load(rf_model_path)
    print("Random Forest model loaded successfully.")
    loaded_mlp_model = load_model(mlp_model_path)
    print("MLP model loaded successfully.")
    loaded_meta_model = load(meta_model_path)
    print("Meta model loaded successfully.")
except Exception as e:
    print(f"Error loading models or scaler: {e}")

def predict_and_plot(velocity, temperature, precipitation, humidity):
    try:
        # Prepare the example data
        example_data = pd.DataFrame({
            'Velocity(mph)': [velocity],
            'Temperature': [temperature],
            'Precipitation': [precipitation],
            'Humidity': [humidity]
        })

        # Scale the example data
        example_data_scaled = scaler_X.transform(example_data)

        # Function to predict contamination levels
        def predict_contamination(example_data_scaled):
            # Predict using MLP model
            mlp_predictions_contamination, mlp_predictions_gradients = loaded_mlp_model.predict(example_data_scaled)

            # Predict using RF model
            rf_predictions = loaded_rf_model.predict(example_data_scaled)

            # Combine predictions for meta model
            combined_features = np.concatenate([np.concatenate([mlp_predictions_contamination, mlp_predictions_gradients], axis=1), rf_predictions], axis=1)

            # Predict using meta model
            meta_predictions = loaded_meta_model.predict(combined_features)

            return meta_predictions[:, :6]  # Assuming the first 6 columns are contamination predictions

        # Predict contamination levels for the single example
        contamination_levels = predict_contamination(example_data_scaled)

        # Simulate contamination levels at multiple time intervals
        time_intervals = np.arange(0, 601, 60)  # Simulating time intervals from 0 to 600 seconds

        # Generate simulated contamination levels (linear interpolation between predicted values)
        simulated_contamination_levels = np.array([
            np.linspace(contamination_levels[0][i], contamination_levels[0][i] * 2, len(time_intervals))
            for i in range(contamination_levels.shape[1])
        ]).T

        # Function to calculate cleaning time using linear interpolation
        def calculate_cleaning_time(time_intervals, contamination_levels, threshold=0.4):
            cleaning_times = []
            for i in range(contamination_levels.shape[1]):
                levels = contamination_levels[:, i]
                for j in range(1, len(levels)):
                    if levels[j-1] <= threshold <= levels[j]:
                        # Linear interpolation
                        t1, t2 = time_intervals[j-1], time_intervals[j]
                        c1, c2 = levels[j-1], levels[j]
                        cleaning_time = t1 + (threshold - c1) * (t2 - t1) / (c2 - c1)
                        cleaning_times.append(cleaning_time)
                        break
            return cleaning_times

        # Calculate cleaning times for all 6 lidars
        cleaning_times = calculate_cleaning_time(time_intervals, simulated_contamination_levels)

        # Lidar names
        lidar_names = ['F/L', 'F/R', 'Left', 'Right', 'Roof', 'Rear']

        # Plot the graph
        plt.figure(figsize=(12, 8))

        for i in range(simulated_contamination_levels.shape[1]):
            plt.plot(time_intervals, simulated_contamination_levels[:, i], label=f'{lidar_names[i]}')
            plt.axhline(y=0.4, color='r', linestyle='--', label='Contamination Threshold' if i == 0 else "")
            if i < len(cleaning_times):
                plt.scatter(cleaning_times[i], 0.4, color='k')  # Mark the cleaning time point

        plt.title('Contamination Levels Over Time for Each Lidar')
        plt.xlabel('Time (seconds)')
        plt.ylabel('Contamination Level')
        plt.legend()
        plt.grid(True)
        
        # Return the plot and predictions
        return plt, [f"{val * 100:.2f}%" for val in contamination_levels[0]], [f"{val:.2f}" for val in cleaning_times]

    except Exception as e:
        print(f"Error in Gradio interface: {e}")
        return plt.figure(), ["Error"] * 6, ["Error"] * 6

inputs = [
    gr.Slider(minimum=0, maximum=100, value=50, step=0.05, label="Velocity (mph)"),
    gr.Slider(minimum=-2, maximum=30, value=0, step=0.5, label="Temperature (°C)"),
    gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="Precipitation (inch)"),
    gr.Slider(minimum=0, maximum=100, value=50, label="Humidity (%)")
]

contamination_outputs = [
    gr.Textbox(label="Front Left Contamination"),
    gr.Textbox(label="Front Right Contamination"),
    gr.Textbox(label="Left Contamination"),
    gr.Textbox(label="Right Contamination"),
    gr.Textbox(label="Roof Contamination"),
    gr.Textbox(label="Rear Contamination")
]

cleaning_time_outputs = [
    gr.Textbox(label="Front Left Cleaning Time"),
    gr.Textbox(label="Front Right Cleaning Time"),
    gr.Textbox(label="Left Cleaning Time"),
    gr.Textbox(label="Right Cleaning Time"),
    gr.Textbox(label="Roof Cleaning Time"),
    gr.Textbox(label="Rear Cleaning Time")
]

with gr.Blocks() as demo:
    gr.Markdown("<h1 style='text-align: center;'>Environmental Factor-Based Contamination & Cleaning Time Prediction</h1>")
    gr.Markdown("This application predicts the contamination levels, corresponding gradients, and cleaning times for different parts of a car's LiDAR system based on environmental factors such as velocity, temperature, precipitation, and humidity.")
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Input Parameters")
            for inp in inputs:
                inp.render()

            # Centered image display
            with gr.Row():
                with gr.Column(scale=1, min_width=0):
                    gr.Image(image_path)  # Ensure the image is centered
            
            gr.Button(value="Submit", variant="primary").click(
                fn=predict_and_plot, 
                inputs=inputs, 
                outputs=[gr.Plot(label="Contamination Levels Over Time")] + contamination_outputs + cleaning_time_outputs
            )
            gr.Button(value="Clear").click(fn=lambda: None)
            
        with gr.Column():
            gr.Markdown("### Contamination Predictions")
            for out in contamination_outputs:
                out.render()
                
        with gr.Column():
            gr.Markdown("### Cleaning Time Predictions")
            for out in cleaning_time_outputs:
                out.render()

demo.launch()