File size: 3,279 Bytes
2850005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d28c91f
2850005
 
d28c91f
2850005
 
 
d28c91f
2850005
 
 
 
 
 
d28c91f
2850005
 
 
d28c91f
2850005
d28c91f
 
 
 
 
 
 
2850005
 
 
 
dffce53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import streamlit as st

# Dynamic CSS
custom_css = """
<style>
    html, body, [data-testid="stAppViewContainer"] {
        background: linear-gradient(
            rgba(0, 0, 0, 0.6), 
            rgba(0, 0, 0, 0.6)
        ), 
        url("https://cdn.pixabay.com/photo/2023/11/23/17/47/sunset-7704533_1280.jpg") no-repeat center center fixed;
        background-size: cover;
        font-family: Arial, sans-serif;
        color: #ffffff;
    }
    h1 {
        color: #ffffff;
        text-align: center;
        font-size: 2rem; 
        margin-top: 2px;
        text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7); 
    }
    .division {
        margin: 20px auto;
        padding: 20px;
        background: rgba(255, 255, 255, 0.1); 
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); 
    }
    .division h2 {
        color: #ffffff;
        margin-bottom: 10px;
        font-size: 2rem; 
        text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.7);
    }
    .division ul li {
        font-size: 1.2rem; 
        line-height: 1.7; 
        margin-bottom: 8px;
    }
</style>
"""

# Inject CSS into Streamlit app
st.markdown(custom_css, unsafe_allow_html=True)

# Header Section
st.markdown("<h1>DIFFERENCES BETWEEN ML AND DL</h1>", unsafe_allow_html=True)

# Content for Machine Learning
st.markdown(
    """
    <div class="division">
        <h2>Key Points in Machine Learning</h2>
        <ul>
            <li><strong>Data Points:</strong> Machine Learning models can be trained on smaller datasets.</li>
            <li><strong>Hardware for Training:</strong> Training can be done on standard CPUs.</li>
            <li><strong>Training Time:</strong> Requires less time due to smaller dataset sizes and simpler algorithms.</li>
            <li><strong>Algorithm Complexity:</strong> Includes simpler models like linear regression and more complex ones like decision trees or random forests.</li>
            <li><strong>Analysis Complexity:</strong> Involves identifying patterns and relationships in data.</li>
            <li><strong>Application Areas:</strong> Widely used for tasks such as regression, classification, and clustering.</li>
        </ul>
    </div>
    """,
    unsafe_allow_html=True
)
# Content for Deep Learning
st.markdown(
    """
    <div class="division">
        <h2>Key Points in Deep Leraning</h2>
        <ul>
            <li><strong>Data Points:</strong> Machine Learning models csan be trained on larger dataset.</li>
            <li><strong>Hardware for Training:</strong> Training can be done on GPUs.</li>
            <li><strong>Training Time:</strong> Requires more time due to larger dataset sizes and bigger algorithms.</li>
            <li><strong>Algorithm Complexity:</strong> Deep learning algorithms are based on artificial neural networks that consist of multiple layers and nodes..</li>
            <li><strong>Analysis Complexity:</strong>Uses complex neural networks with multiple layers to analyze more intricate patterns and relationships.</li>
            <li><strong>Application Areas:</strong> Deep learning is mostly used for complex tasks such as image and speech recognition, natural language processing, and autonomous systems.</li>
        </ul>
    </div>
    """,
    unsafe_allow_html=True
)