Update pages/DIFFERENCES_BETWEEN_ML&DL.py
Browse files
pages/DIFFERENCES_BETWEEN_ML&DL.py
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
|
3 |
-
# Static background image URL
|
4 |
-
|
5 |
-
|
6 |
# Dynamic CSS
|
7 |
custom_css = """
|
8 |
<style>
|
@@ -36,37 +33,34 @@ custom_css = """
|
|
36 |
font-size: 2rem;
|
37 |
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.7);
|
38 |
}
|
39 |
-
.division
|
40 |
font-size: 1.2rem;
|
41 |
line-height: 1.7;
|
|
|
42 |
}
|
43 |
</style>
|
44 |
"""
|
|
|
45 |
# Inject CSS into Streamlit app
|
46 |
st.markdown(custom_css, unsafe_allow_html=True)
|
47 |
|
48 |
# Header Section
|
49 |
st.markdown("<h1>DIFFERENCES BETWEEN ML AND DL</h1>", unsafe_allow_html=True)
|
50 |
|
|
|
51 |
st.markdown(
|
52 |
"""
|
53 |
<div class="division">
|
54 |
-
<h2>
|
55 |
-
<p>
|
56 |
-
|
57 |
-
|
58 |
-
</p>
|
59 |
<ul>
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
</div>
|
68 |
""",
|
69 |
unsafe_allow_html=True
|
70 |
)
|
71 |
-
|
72 |
-
|
|
|
1 |
import streamlit as st
|
2 |
|
|
|
|
|
|
|
3 |
# Dynamic CSS
|
4 |
custom_css = """
|
5 |
<style>
|
|
|
33 |
font-size: 2rem;
|
34 |
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.7);
|
35 |
}
|
36 |
+
.division ul li {
|
37 |
font-size: 1.2rem;
|
38 |
line-height: 1.7;
|
39 |
+
margin-bottom: 8px;
|
40 |
}
|
41 |
</style>
|
42 |
"""
|
43 |
+
|
44 |
# Inject CSS into Streamlit app
|
45 |
st.markdown(custom_css, unsafe_allow_html=True)
|
46 |
|
47 |
# Header Section
|
48 |
st.markdown("<h1>DIFFERENCES BETWEEN ML AND DL</h1>", unsafe_allow_html=True)
|
49 |
|
50 |
+
# Content for Machine Learning
|
51 |
st.markdown(
|
52 |
"""
|
53 |
<div class="division">
|
54 |
+
<h2>Key Points in Machine Learning</h2>
|
|
|
|
|
|
|
|
|
55 |
<ul>
|
56 |
+
<li><strong>Data Points:</strong> Machine Learning models can be trained on smaller datasets.</li>
|
57 |
+
<li><strong>Hardware for Training:</strong> Training can be done on standard CPUs.</li>
|
58 |
+
<li><strong>Training Time:</strong> Requires less time due to smaller dataset sizes and simpler algorithms.</li>
|
59 |
+
<li><strong>Algorithm Complexity:</strong> Includes simpler models like linear regression and more complex ones like decision trees or random forests.</li>
|
60 |
+
<li><strong>Analysis Complexity:</strong> Involves identifying patterns and relationships in data.</li>
|
61 |
+
<li><strong>Application Areas:</strong> Widely used for tasks such as regression, classification, and clustering.</li>
|
62 |
+
</ul>
|
63 |
</div>
|
64 |
""",
|
65 |
unsafe_allow_html=True
|
66 |
)
|
|
|
|