ronakreddy18 commited on
Commit
d28c91f
·
verified ·
1 Parent(s): 2850005

Update pages/DIFFERENCES_BETWEEN_ML&DL.py

Browse files
Files changed (1) hide show
  1. pages/DIFFERENCES_BETWEEN_ML&DL.py +12 -18
pages/DIFFERENCES_BETWEEN_ML&DL.py CHANGED
@@ -1,8 +1,5 @@
1
  import streamlit as st
2
 
3
- # Static background image URL
4
-
5
-
6
  # Dynamic CSS
7
  custom_css = """
8
  <style>
@@ -36,37 +33,34 @@ custom_css = """
36
  font-size: 2rem;
37
  text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.7);
38
  }
39
- .division p, .division ul li {
40
  font-size: 1.2rem;
41
  line-height: 1.7;
 
42
  }
43
  </style>
44
  """
 
45
  # Inject CSS into Streamlit app
46
  st.markdown(custom_css, unsafe_allow_html=True)
47
 
48
  # Header Section
49
  st.markdown("<h1>DIFFERENCES BETWEEN ML AND DL</h1>", unsafe_allow_html=True)
50
 
 
51
  st.markdown(
52
  """
53
  <div class="division">
54
- <h2>The points in machine learning?</h2>
55
- <p>
56
-
57
-
58
- </p>
59
  <ul>
60
- <li><strong>Data Points:</strong>Can train only on small data points .</li>
61
- <li><strong>Hardware for Training:</strong>Can train on CPU.</li>
62
- <li><strong>Training Time:</strong>Requires less time due to smaller sizes.</li>
63
- <li><strong>Algorithm Complexity:</strong>Machine learning algorithms can range from simple linear models to more complex models such as decision trees and random forests..</li>
64
- <li><strong>Analysis Complexity:</strong>Involves training algorithm to identify patterns and relationship in data..</li>
65
- <li><strong>Application Areas:</strong>It is used for a wide range of applications, such as regression, classification, and clustering.</li>
66
- </ul>
67
  </div>
68
  """,
69
  unsafe_allow_html=True
70
  )
71
-
72
-
 
1
  import streamlit as st
2
 
 
 
 
3
  # Dynamic CSS
4
  custom_css = """
5
  <style>
 
33
  font-size: 2rem;
34
  text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.7);
35
  }
36
+ .division ul li {
37
  font-size: 1.2rem;
38
  line-height: 1.7;
39
+ margin-bottom: 8px;
40
  }
41
  </style>
42
  """
43
+
44
  # Inject CSS into Streamlit app
45
  st.markdown(custom_css, unsafe_allow_html=True)
46
 
47
  # Header Section
48
  st.markdown("<h1>DIFFERENCES BETWEEN ML AND DL</h1>", unsafe_allow_html=True)
49
 
50
+ # Content for Machine Learning
51
  st.markdown(
52
  """
53
  <div class="division">
54
+ <h2>Key Points in Machine Learning</h2>
 
 
 
 
55
  <ul>
56
+ <li><strong>Data Points:</strong> Machine Learning models can be trained on smaller datasets.</li>
57
+ <li><strong>Hardware for Training:</strong> Training can be done on standard CPUs.</li>
58
+ <li><strong>Training Time:</strong> Requires less time due to smaller dataset sizes and simpler algorithms.</li>
59
+ <li><strong>Algorithm Complexity:</strong> Includes simpler models like linear regression and more complex ones like decision trees or random forests.</li>
60
+ <li><strong>Analysis Complexity:</strong> Involves identifying patterns and relationships in data.</li>
61
+ <li><strong>Application Areas:</strong> Widely used for tasks such as regression, classification, and clustering.</li>
62
+ </ul>
63
  </div>
64
  """,
65
  unsafe_allow_html=True
66
  )