Update pages/DIFFERENCES_BETWEEN_ML&DL.py
Browse files
pages/DIFFERENCES_BETWEEN_ML&DL.py
CHANGED
@@ -1 +1,72 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
# Static background image URL
|
4 |
+
|
5 |
+
|
6 |
+
# Dynamic CSS
|
7 |
+
custom_css = """
|
8 |
+
<style>
|
9 |
+
html, body, [data-testid="stAppViewContainer"] {
|
10 |
+
background: linear-gradient(
|
11 |
+
rgba(0, 0, 0, 0.6),
|
12 |
+
rgba(0, 0, 0, 0.6)
|
13 |
+
),
|
14 |
+
url("https://cdn.pixabay.com/photo/2023/11/23/17/47/sunset-7704533_1280.jpg") no-repeat center center fixed;
|
15 |
+
background-size: cover;
|
16 |
+
font-family: Arial, sans-serif;
|
17 |
+
color: #ffffff;
|
18 |
+
}
|
19 |
+
h1 {
|
20 |
+
color: #ffffff;
|
21 |
+
text-align: center;
|
22 |
+
font-size: 2rem;
|
23 |
+
margin-top: 2px;
|
24 |
+
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7);
|
25 |
+
}
|
26 |
+
.division {
|
27 |
+
margin: 20px auto;
|
28 |
+
padding: 20px;
|
29 |
+
background: rgba(255, 255, 255, 0.1);
|
30 |
+
border-radius: 10px;
|
31 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
32 |
+
}
|
33 |
+
.division h2 {
|
34 |
+
color: #ffffff;
|
35 |
+
margin-bottom: 10px;
|
36 |
+
font-size: 2rem;
|
37 |
+
text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.7);
|
38 |
+
}
|
39 |
+
.division p, .division ul li {
|
40 |
+
font-size: 1.2rem;
|
41 |
+
line-height: 1.7;
|
42 |
+
}
|
43 |
+
</style>
|
44 |
+
"""
|
45 |
+
# Inject CSS into Streamlit app
|
46 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
47 |
+
|
48 |
+
# Header Section
|
49 |
+
st.markdown("<h1>DIFFERENCES BETWEEN ML AND DL</h1>", unsafe_allow_html=True)
|
50 |
+
|
51 |
+
st.markdown(
|
52 |
+
"""
|
53 |
+
<div class="division">
|
54 |
+
<h2>The points in machine learning?</h2>
|
55 |
+
<p>
|
56 |
+
|
57 |
+
|
58 |
+
</p>
|
59 |
+
<ul>
|
60 |
+
<li><strong>Data Points:</strong>Can train only on small data points .</li>
|
61 |
+
<li><strong>Hardware for Training:</strong>Can train on CPU.</li>
|
62 |
+
<li><strong>Training Time:</strong>Requires less time due to smaller sizes.</li>
|
63 |
+
<li><strong>Algorithm Complexity:</strong>Machine learning algorithms can range from simple linear models to more complex models such as decision trees and random forests..</li>
|
64 |
+
<li><strong>Analysis Complexity:</strong>Involves training algorithm to identify patterns and relationship in data..</li>
|
65 |
+
<li><strong>Application Areas:</strong>It is used for a wide range of applications, such as regression, classification, and clustering.</li>
|
66 |
+
</ul>
|
67 |
+
</div>
|
68 |
+
""",
|
69 |
+
unsafe_allow_html=True
|
70 |
+
)
|
71 |
+
|
72 |
+
|