ronakreddy18 commited on
Commit
2850005
·
verified ·
1 Parent(s): 5153482

Update pages/DIFFERENCES_BETWEEN_ML&DL.py

Browse files
Files changed (1) hide show
  1. pages/DIFFERENCES_BETWEEN_ML&DL.py +72 -1
pages/DIFFERENCES_BETWEEN_ML&DL.py CHANGED
@@ -1 +1,72 @@
1
- A
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ # Static background image URL
4
+
5
+
6
+ # Dynamic CSS
7
+ custom_css = """
8
+ <style>
9
+ html, body, [data-testid="stAppViewContainer"] {
10
+ background: linear-gradient(
11
+ rgba(0, 0, 0, 0.6),
12
+ rgba(0, 0, 0, 0.6)
13
+ ),
14
+ url("https://cdn.pixabay.com/photo/2023/11/23/17/47/sunset-7704533_1280.jpg") no-repeat center center fixed;
15
+ background-size: cover;
16
+ font-family: Arial, sans-serif;
17
+ color: #ffffff;
18
+ }
19
+ h1 {
20
+ color: #ffffff;
21
+ text-align: center;
22
+ font-size: 2rem;
23
+ margin-top: 2px;
24
+ text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.7);
25
+ }
26
+ .division {
27
+ margin: 20px auto;
28
+ padding: 20px;
29
+ background: rgba(255, 255, 255, 0.1);
30
+ border-radius: 10px;
31
+ box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
32
+ }
33
+ .division h2 {
34
+ color: #ffffff;
35
+ margin-bottom: 10px;
36
+ font-size: 2rem;
37
+ text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.7);
38
+ }
39
+ .division p, .division ul li {
40
+ font-size: 1.2rem;
41
+ line-height: 1.7;
42
+ }
43
+ </style>
44
+ """
45
+ # Inject CSS into Streamlit app
46
+ st.markdown(custom_css, unsafe_allow_html=True)
47
+
48
+ # Header Section
49
+ st.markdown("<h1>DIFFERENCES BETWEEN ML AND DL</h1>", unsafe_allow_html=True)
50
+
51
+ st.markdown(
52
+ """
53
+ <div class="division">
54
+ <h2>The points in machine learning?</h2>
55
+ <p>
56
+
57
+
58
+ </p>
59
+ <ul>
60
+ <li><strong>Data Points:</strong>Can train only on small data points .</li>
61
+ <li><strong>Hardware for Training:</strong>Can train on CPU.</li>
62
+ <li><strong>Training Time:</strong>Requires less time due to smaller sizes.</li>
63
+ <li><strong>Algorithm Complexity:</strong>Machine learning algorithms can range from simple linear models to more complex models such as decision trees and random forests..</li>
64
+ <li><strong>Analysis Complexity:</strong>Involves training algorithm to identify patterns and relationship in data..</li>
65
+ <li><strong>Application Areas:</strong>It is used for a wide range of applications, such as regression, classification, and clustering.</li>
66
+ </ul>
67
+ </div>
68
+ """,
69
+ unsafe_allow_html=True
70
+ )
71
+
72
+