tryoffdiff / app.py
rizavelioglu
v2
8eb415a
raw
history blame
22.8 kB
import os
import time
from pathlib import Path
import torch
from torchvision.io import read_image
import torchvision.transforms.v2 as transforms
from torchvision.utils import make_grid
import gradio as gr
from diffusers import AutoencoderKL, EulerDiscreteScheduler
from transformers import SiglipImageProcessor, SiglipVisionModel
from huggingface_hub import hf_hub_download
import spaces
from esrgan_model import UpscalerESRGAN
from model import create_model
device = "cuda"
# Custom transform to pad images to square
class PadToSquare:
def __call__(self, img):
_, h, w = img.shape
max_side = max(h, w)
pad_h = (max_side - h) // 2
pad_w = (max_side - w) // 2
padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h)
return transforms.functional.pad(img, padding, padding_mode="edge")
# Timer decorator
def timer_func(func):
def wrapper(*args, **kwargs):
t0 = time.time()
result = func(*args, **kwargs)
print(f"{func.__name__} took {time.time() - t0:.2f} seconds")
return result
return wrapper
@timer_func
def load_model(model_class_name, model_filename, repo_id: str = "rizavelioglu/tryoffdiff"):
path_model = hf_hub_download(repo_id=repo_id, filename=model_filename, force_download=False)
state_dict = torch.load(path_model, weights_only=True, map_location=device)
state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()}
model = create_model(model_class_name).to(device)
# model = torch.compile(model)
model.load_state_dict(state_dict, strict=True)
return model.eval()
@spaces.GPU(duration=10)
@torch.no_grad()
@timer_func
def generate_multi_image(input_image, garment_types, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
label_map = {"Upper-Body": 0, "Lower-Body": 1, "Dress": 2}
valid_single = ["Upper-Body", "Lower-Body", "Dress"]
valid_tuple = ["Upper-Body", "Lower-Body"]
if not garment_types:
raise gr.Error("Please select at least one garment type.")
if len(garment_types) == 1 and garment_types[0] in valid_single:
selected, label_indices = garment_types, [label_map[garment_types[0]]]
elif sorted(garment_types) == sorted(valid_tuple):
selected, label_indices = valid_tuple, [label_map[t] for t in valid_tuple]
else:
raise gr.Error("Invalid selection. Choose one garment type or Upper-Body and Lower-Body together.")
batch_size = len(selected)
scheduler.set_timesteps(num_inference_steps)
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(batch_size, 4, 64, 64, generator=generator, device=device)
# Process inputs
cond_image = img_enc_transform(read_image(input_image))
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
cond_emb = cond_emb.expand(batch_size, *cond_emb.shape[1:])
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
label = torch.tensor(label_indices, device=device, dtype=torch.int64)
model = models["multi"]
with torch.autocast(device):
for t in scheduler.timesteps:
t = t.to(device) # Ensure t is on the correct device
if guidance_scale > 1:
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb]), torch.cat([label, label])).chunk(2)
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0]) # Classifier-free guidance
else:
noise_pred = model(x, t, cond_emb, label) # Standard prediction
# Scheduler step
scheduler_output = scheduler.step(noise_pred, t, x)
x = scheduler_output.prev_sample
# Decode predictions from latent space
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
images = (decoded / 2 + 0.5).cpu()
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
output_image = transforms.ToPILImage()(grid)
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
@spaces.GPU(duration=10)
@torch.no_grad()
@timer_func
def generate_upper_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
model = models["upper"]
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
# Process input image
cond_image = img_enc_transform(read_image(input_image))
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
with torch.autocast(device):
for t in scheduler.timesteps:
t = t.to(device) # Ensure t is on the correct device
if guidance_scale > 1: # Classifier-free guidance
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
else: # Standard prediction
noise_pred = model(x, t, cond_emb)
# Scheduler step
scheduler_output = scheduler.step(noise_pred, t, x)
x = scheduler_output.prev_sample
# Decode predictions from latent space
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
images = (decoded / 2 + 0.5).cpu()
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
output_image = transforms.ToPILImage()(grid)
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
@spaces.GPU(duration=10)
@torch.no_grad()
@timer_func
def generate_lower_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
model = models["lower"]
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
# Process input image
cond_image = img_enc_transform(read_image(input_image))
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
with torch.autocast(device):
for t in scheduler.timesteps:
t = t.to(device) # Ensure t is on the correct device
if guidance_scale > 1: # Classifier-free guidance
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
else: # Standard prediction
noise_pred = model(x, t, cond_emb)
# Scheduler step
scheduler_output = scheduler.step(noise_pred, t, x)
x = scheduler_output.prev_sample
# Decode predictions from latent space
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
images = (decoded / 2 + 0.5).cpu()
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
output_image = transforms.ToPILImage()(grid)
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
@spaces.GPU(duration=10)
@torch.no_grad()
@timer_func
def generate_dress_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
model = models["dress"]
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
# Process input image
cond_image = img_enc_transform(read_image(input_image))
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
with torch.autocast(device):
for t in scheduler.timesteps:
t = t.to(device) # Ensure t is on the correct device
if guidance_scale > 1: # Classifier-free guidance
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
else: # Standard prediction
noise_pred = model(x, t, cond_emb)
# Scheduler step
scheduler_output = scheduler.step(noise_pred, t, x)
x = scheduler_output.prev_sample
# Decode predictions from latent space
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
images = (decoded / 2 + 0.5).cpu()
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
output_image = transforms.ToPILImage()(grid)
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
def create_multi_tab():
description = r"""
<table class="description-table">
<tr>
<td width="50%">
In total, 4 models are available for generating garments (one in each tab):<br>
- <b>Multi-Garment</b>: Generate multiple garments (e.g., upper-body and lower-body) sequentially.<br>
- <b>Upper-Body</b>: Generate upper-body garments (e.g., tops, jackets, etc.).<br>
- <b>Lower-Body</b>: Generate lower-body garments (e.g., pants, skirts, etc.).<br>
- <b>Dress</b>: Generate dresses.<br>
</td>
<td width="50%">
<b>How to use:</b><br>
1. Upload a reference image,<br>
2. Adjust the parameters as needed,<br>
3. Click "Generate" to create the garment(s).<br>
&#128161; Individual models perform slightly better than the multi-garment model, but the latter is more versatile.
</td>
</tr>
</table>
"""
examples = [
["examples/048851_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048851_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
["examples/048588_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048588_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
["examples/048643_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048643_0.jpg", ["Lower-Body"], 42, 2.0, 20, False],
["examples/048737_0.jpg", ["Dress"], 42, 2.0, 20, False],
["examples/048737_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048690_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048690_0.jpg", ["Lower-Body"], 42, 2.0, 20, False],
["examples/048691_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048691_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
["examples/048732_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048754_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048799_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048811_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048821_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048821_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
]
with gr.Blocks() as tab:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
with gr.Column(min_width=250):
garment_type = gr.CheckboxGroup(["Upper-Body", "Lower-Body", "Dress"], label="Select Garment Type", value=["Upper-Body", "Lower-Body"])
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
submit_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
gr.Examples(examples=examples, inputs=[input_image, garment_type, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_multi_image, cache_examples=False, examples_per_page=2)
gr.Markdown(article)
submit_btn.click(
fn=generate_multi_image,
inputs=[input_image, garment_type, seed, guidance_scale, inference_steps, upscale],
outputs=output_image
)
return tab
def create_upper_tab():
examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in os.listdir("examples/") if img_filename.endswith("_0.jpg")]
examples += [
["examples/00084_00.jpg", 42, 2.0, 20, False],
["examples/00254_00.jpg", 42, 2.0, 20, False],
["examples/00397_00.jpg", 42, 2.0, 20, False],
["examples/01320_00.jpg", 42, 2.0, 20, False],
["examples/02390_00.jpg", 42, 2.0, 20, False],
["examples/14227_00.jpg", 42, 2.0, 20, False],
]
with gr.Blocks() as tab:
gr.Markdown(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
with gr.Column(min_width=250):
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
submit_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_upper_image, cache_examples=False, examples_per_page=2)
gr.Markdown(article)
submit_btn.click(
fn=generate_upper_image,
inputs=[input_image, seed, guidance_scale, inference_steps, upscale],
outputs=output_image
)
return tab
def create_lower_tab():
examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in os.listdir("examples/") if img_filename.endswith("_0.jpg")]
with gr.Blocks() as tab:
gr.Markdown(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
with gr.Column(min_width=250):
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
submit_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_lower_image, cache_examples=False, examples_per_page=2)
gr.Markdown(article)
submit_btn.click(
fn=generate_lower_image,
inputs=[input_image, seed, guidance_scale, inference_steps, upscale],
outputs=output_image
)
return tab
def create_dress_tab():
examples = [
["examples/053480_0.jpg", 42, 2.0, 20, False],
["examples/048737_0.jpg", 42, 2.0, 20, False],
["examples/048811_0.jpg", 42, 2.0, 20, False],
["examples/053733_0.jpg", 42, 2.0, 20, False],
["examples/052606_0.jpg", 42, 2.0, 20, False],
["examples/053682_0.jpg", 42, 2.0, 20, False],
["examples/052036_0.jpg", 42, 2.0, 20, False],
["examples/052644_0.jpg", 42, 2.0, 20, False],
]
with gr.Blocks() as tab:
gr.Markdown(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
with gr.Column(min_width=250):
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
submit_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_dress_image, cache_examples=False, examples_per_page=2)
gr.Markdown(article)
submit_btn.click(
fn=generate_dress_image,
inputs=[input_image, seed, guidance_scale, inference_steps, upscale],
outputs=output_image
)
return tab
# UI elements
title = f"""
<div class='center-header' style="flex-direction: row; gap: 1.5em;">
<h1 style="font-size:2.2em; margin-bottom:0.1em;">Virtual Try-Off Generator</h1>
<a href='https://rizavelioglu.github.io/tryoffdiff' style="align-self:center;">
<button style="background-color:#1976d2; color:white; font-weight:bold; border:none; border-radius:4px; padding:4px 10px; font-size:1.1em; cursor:pointer;">
&#128279; Project page
</button>
</a>
</div>
"""
article = r"""
**Citation**<br>If you use this work, please give a star ⭐ and a citation:
```
@article{velioglu2024tryoffdiff,
title = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models},
author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara},
journal = {arXiv},
year = {2024},
note = {\url{https://doi.org/nt3n}}
}
@article{velioglu2025enhancing,
title = {Enhancing Person-to-Person Virtual Try-On with Multi-Garment Virtual Try-Off},
author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara},
journal = {arXiv},
year = {2025},
note = {\url{https://doi.org/pn67}}
}
```
"""
# Custom CSS for proper styling
custom_css = """
.center-header {
display: flex;
align-items: center;
justify-content: center;
margin: 0 0 20px 0;
}
.center-header h1 {
margin: 0;
text-align: center;
}
.description-table {
width: 100%;
border-collapse: collapse;
}
.description-table td {
padding: 10px;
vertical-align: top;
}
"""
if __name__ == "__main__":
# Image Encoder and transforms
img_enc_transform = transforms.Compose(
[
PadToSquare(), # Custom transform to pad the image to a square
transforms.Resize((512, 512)),
transforms.ToDtype(torch.float32, scale=True),
transforms.Normalize(mean=[0.5], std=[0.5]),
]
)
ckpt = "google/siglip-base-patch16-512"
img_processor = SiglipImageProcessor.from_pretrained(ckpt, do_resize=False, do_rescale=False, do_normalize=False)
img_enc = SiglipVisionModel.from_pretrained(ckpt).eval().to(device)
# Initialize VAE (only Decoder will be used) & Noise Scheduler
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").eval().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(
hf_hub_download(repo_id="rizavelioglu/tryoffdiff", filename="scheduler/scheduler_config_v2.json", force_download=False)
)
scheduler.is_scale_input_called = True # suppress warning
# Upscaler model
upscaler = UpscalerESRGAN(
model_path=Path(hf_hub_download(repo_id="philz1337x/upscaler", filename="4x-UltraSharp.pth")),
device=torch.device(device),
dtype=torch.float32,
)
# Model configurations and loading
models = {}
model_paths = {
"upper": {"class_name": "TryOffDiffv2_single", "path": "tryoffdiffv2_upper.pth"}, # internal code: model_20250213_134430
"lower": {"class_name": "TryOffDiffv2_single", "path": "tryoffdiffv2_lower.pth"}, # internal code: model_20250213_134130
"dress": {"class_name": "TryOffDiffv2_single", "path": "tryoffdiffv2_dress.pth"}, # internal code: model_20250213_133554
"multi": {"class_name": "TryOffDiffv2", "path": "tryoffdiffv2_multi.pth"}, # internal code: model_20250310_155608
}
for name, cfg in model_paths.items():
models[name] = load_model(cfg["class_name"], cfg["path"])
torch.cuda.empty_cache()
# Create tabbed interface
demo = gr.TabbedInterface(
[create_multi_tab(), create_upper_tab(), create_lower_tab(), create_dress_tab()],
["Multi-Garment", "Upper-Body", "Lower-Body", "Dress"],
css=custom_css,
)
demo.launch(ssr_mode=False)