Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,824 Bytes
1ca8185 8eb415a 835cd00 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 835cd00 8eb415a 1ca8185 8eb415a 1ca8185 80cc34d 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 835cd00 1ca8185 835cd00 8eb415a 835cd00 8eb415a 835cd00 8eb415a 1ca8185 835cd00 8eb415a 835cd00 8eb415a 835cd00 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a 1ca8185 8eb415a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import os
import time
from pathlib import Path
import torch
from torchvision.io import read_image
import torchvision.transforms.v2 as transforms
from torchvision.utils import make_grid
import gradio as gr
from diffusers import AutoencoderKL, EulerDiscreteScheduler
from transformers import SiglipImageProcessor, SiglipVisionModel
from huggingface_hub import hf_hub_download
import spaces
from esrgan_model import UpscalerESRGAN
from model import create_model
device = "cuda"
# Custom transform to pad images to square
class PadToSquare:
def __call__(self, img):
_, h, w = img.shape
max_side = max(h, w)
pad_h = (max_side - h) // 2
pad_w = (max_side - w) // 2
padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h)
return transforms.functional.pad(img, padding, padding_mode="edge")
# Timer decorator
def timer_func(func):
def wrapper(*args, **kwargs):
t0 = time.time()
result = func(*args, **kwargs)
print(f"{func.__name__} took {time.time() - t0:.2f} seconds")
return result
return wrapper
@timer_func
def load_model(model_class_name, model_filename, repo_id: str = "rizavelioglu/tryoffdiff"):
path_model = hf_hub_download(repo_id=repo_id, filename=model_filename, force_download=False)
state_dict = torch.load(path_model, weights_only=True, map_location=device)
state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()}
model = create_model(model_class_name).to(device)
# model = torch.compile(model)
model.load_state_dict(state_dict, strict=True)
return model.eval()
@spaces.GPU(duration=10)
@torch.no_grad()
@timer_func
def generate_multi_image(input_image, garment_types, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
label_map = {"Upper-Body": 0, "Lower-Body": 1, "Dress": 2}
valid_single = ["Upper-Body", "Lower-Body", "Dress"]
valid_tuple = ["Upper-Body", "Lower-Body"]
if not garment_types:
raise gr.Error("Please select at least one garment type.")
if len(garment_types) == 1 and garment_types[0] in valid_single:
selected, label_indices = garment_types, [label_map[garment_types[0]]]
elif sorted(garment_types) == sorted(valid_tuple):
selected, label_indices = valid_tuple, [label_map[t] for t in valid_tuple]
else:
raise gr.Error("Invalid selection. Choose one garment type or Upper-Body and Lower-Body together.")
batch_size = len(selected)
scheduler.set_timesteps(num_inference_steps)
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(batch_size, 4, 64, 64, generator=generator, device=device)
# Process inputs
cond_image = img_enc_transform(read_image(input_image))
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
cond_emb = cond_emb.expand(batch_size, *cond_emb.shape[1:])
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
label = torch.tensor(label_indices, device=device, dtype=torch.int64)
model = models["multi"]
with torch.autocast(device):
for t in scheduler.timesteps:
t = t.to(device) # Ensure t is on the correct device
if guidance_scale > 1:
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb]), torch.cat([label, label])).chunk(2)
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0]) # Classifier-free guidance
else:
noise_pred = model(x, t, cond_emb, label) # Standard prediction
# Scheduler step
scheduler_output = scheduler.step(noise_pred, t, x)
x = scheduler_output.prev_sample
# Decode predictions from latent space
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
images = (decoded / 2 + 0.5).cpu()
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
output_image = transforms.ToPILImage()(grid)
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
@spaces.GPU(duration=10)
@torch.no_grad()
@timer_func
def generate_upper_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
model = models["upper"]
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
# Process input image
cond_image = img_enc_transform(read_image(input_image))
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
with torch.autocast(device):
for t in scheduler.timesteps:
t = t.to(device) # Ensure t is on the correct device
if guidance_scale > 1: # Classifier-free guidance
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
else: # Standard prediction
noise_pred = model(x, t, cond_emb)
# Scheduler step
scheduler_output = scheduler.step(noise_pred, t, x)
x = scheduler_output.prev_sample
# Decode predictions from latent space
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
images = (decoded / 2 + 0.5).cpu()
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
output_image = transforms.ToPILImage()(grid)
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
@spaces.GPU(duration=10)
@torch.no_grad()
@timer_func
def generate_lower_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
model = models["lower"]
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
# Process input image
cond_image = img_enc_transform(read_image(input_image))
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
with torch.autocast(device):
for t in scheduler.timesteps:
t = t.to(device) # Ensure t is on the correct device
if guidance_scale > 1: # Classifier-free guidance
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
else: # Standard prediction
noise_pred = model(x, t, cond_emb)
# Scheduler step
scheduler_output = scheduler.step(noise_pred, t, x)
x = scheduler_output.prev_sample
# Decode predictions from latent space
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
images = (decoded / 2 + 0.5).cpu()
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
output_image = transforms.ToPILImage()(grid)
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
@spaces.GPU(duration=10)
@torch.no_grad()
@timer_func
def generate_dress_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
model = models["dress"]
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
# Process input image
cond_image = img_enc_transform(read_image(input_image))
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
with torch.autocast(device):
for t in scheduler.timesteps:
t = t.to(device) # Ensure t is on the correct device
if guidance_scale > 1: # Classifier-free guidance
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
else: # Standard prediction
noise_pred = model(x, t, cond_emb)
# Scheduler step
scheduler_output = scheduler.step(noise_pred, t, x)
x = scheduler_output.prev_sample
# Decode predictions from latent space
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
images = (decoded / 2 + 0.5).cpu()
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
output_image = transforms.ToPILImage()(grid)
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
def create_multi_tab():
description = r"""
<table class="description-table">
<tr>
<td width="50%">
In total, 4 models are available for generating garments (one in each tab):<br>
- <b>Multi-Garment</b>: Generate multiple garments (e.g., upper-body and lower-body) sequentially.<br>
- <b>Upper-Body</b>: Generate upper-body garments (e.g., tops, jackets, etc.).<br>
- <b>Lower-Body</b>: Generate lower-body garments (e.g., pants, skirts, etc.).<br>
- <b>Dress</b>: Generate dresses.<br>
</td>
<td width="50%">
<b>How to use:</b><br>
1. Upload a reference image,<br>
2. Adjust the parameters as needed,<br>
3. Click "Generate" to create the garment(s).<br>
💡 Individual models perform slightly better than the multi-garment model, but the latter is more versatile.
</td>
</tr>
</table>
"""
examples = [
["examples/048851_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048851_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
["examples/048588_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048588_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
["examples/048643_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048643_0.jpg", ["Lower-Body"], 42, 2.0, 20, False],
["examples/048737_0.jpg", ["Dress"], 42, 2.0, 20, False],
["examples/048737_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048690_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048690_0.jpg", ["Lower-Body"], 42, 2.0, 20, False],
["examples/048691_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048691_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
["examples/048732_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048754_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048799_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048811_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048821_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
["examples/048821_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
]
with gr.Blocks() as tab:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
with gr.Column(min_width=250):
garment_type = gr.CheckboxGroup(["Upper-Body", "Lower-Body", "Dress"], label="Select Garment Type", value=["Upper-Body", "Lower-Body"])
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
submit_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
gr.Examples(examples=examples, inputs=[input_image, garment_type, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_multi_image, cache_examples=False, examples_per_page=2)
gr.Markdown(article)
submit_btn.click(
fn=generate_multi_image,
inputs=[input_image, garment_type, seed, guidance_scale, inference_steps, upscale],
outputs=output_image
)
return tab
def create_upper_tab():
examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in os.listdir("examples/") if img_filename.endswith("_0.jpg")]
examples += [
["examples/00084_00.jpg", 42, 2.0, 20, False],
["examples/00254_00.jpg", 42, 2.0, 20, False],
["examples/00397_00.jpg", 42, 2.0, 20, False],
["examples/01320_00.jpg", 42, 2.0, 20, False],
["examples/02390_00.jpg", 42, 2.0, 20, False],
["examples/14227_00.jpg", 42, 2.0, 20, False],
]
with gr.Blocks() as tab:
gr.Markdown(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
with gr.Column(min_width=250):
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
submit_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_upper_image, cache_examples=False, examples_per_page=2)
gr.Markdown(article)
submit_btn.click(
fn=generate_upper_image,
inputs=[input_image, seed, guidance_scale, inference_steps, upscale],
outputs=output_image
)
return tab
def create_lower_tab():
examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in os.listdir("examples/") if img_filename.endswith("_0.jpg")]
with gr.Blocks() as tab:
gr.Markdown(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
with gr.Column(min_width=250):
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
submit_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_lower_image, cache_examples=False, examples_per_page=2)
gr.Markdown(article)
submit_btn.click(
fn=generate_lower_image,
inputs=[input_image, seed, guidance_scale, inference_steps, upscale],
outputs=output_image
)
return tab
def create_dress_tab():
examples = [
["examples/053480_0.jpg", 42, 2.0, 20, False],
["examples/048737_0.jpg", 42, 2.0, 20, False],
["examples/048811_0.jpg", 42, 2.0, 20, False],
["examples/053733_0.jpg", 42, 2.0, 20, False],
["examples/052606_0.jpg", 42, 2.0, 20, False],
["examples/053682_0.jpg", 42, 2.0, 20, False],
["examples/052036_0.jpg", 42, 2.0, 20, False],
["examples/052644_0.jpg", 42, 2.0, 20, False],
]
with gr.Blocks() as tab:
gr.Markdown(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
with gr.Column(min_width=250):
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
submit_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_dress_image, cache_examples=False, examples_per_page=2)
gr.Markdown(article)
submit_btn.click(
fn=generate_dress_image,
inputs=[input_image, seed, guidance_scale, inference_steps, upscale],
outputs=output_image
)
return tab
# UI elements
title = f"""
<div class='center-header' style="flex-direction: row; gap: 1.5em;">
<h1 style="font-size:2.2em; margin-bottom:0.1em;">Virtual Try-Off Generator</h1>
<a href='https://rizavelioglu.github.io/tryoffdiff' style="align-self:center;">
<button style="background-color:#1976d2; color:white; font-weight:bold; border:none; border-radius:4px; padding:4px 10px; font-size:1.1em; cursor:pointer;">
🔗 Project page
</button>
</a>
</div>
"""
article = r"""
**Citation**<br>If you use this work, please give a star ⭐ and a citation:
```
@article{velioglu2024tryoffdiff,
title = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models},
author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara},
journal = {arXiv},
year = {2024},
note = {\url{https://doi.org/nt3n}}
}
@article{velioglu2025enhancing,
title = {Enhancing Person-to-Person Virtual Try-On with Multi-Garment Virtual Try-Off},
author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara},
journal = {arXiv},
year = {2025},
note = {\url{https://doi.org/pn67}}
}
```
"""
# Custom CSS for proper styling
custom_css = """
.center-header {
display: flex;
align-items: center;
justify-content: center;
margin: 0 0 20px 0;
}
.center-header h1 {
margin: 0;
text-align: center;
}
.description-table {
width: 100%;
border-collapse: collapse;
}
.description-table td {
padding: 10px;
vertical-align: top;
}
"""
if __name__ == "__main__":
# Image Encoder and transforms
img_enc_transform = transforms.Compose(
[
PadToSquare(), # Custom transform to pad the image to a square
transforms.Resize((512, 512)),
transforms.ToDtype(torch.float32, scale=True),
transforms.Normalize(mean=[0.5], std=[0.5]),
]
)
ckpt = "google/siglip-base-patch16-512"
img_processor = SiglipImageProcessor.from_pretrained(ckpt, do_resize=False, do_rescale=False, do_normalize=False)
img_enc = SiglipVisionModel.from_pretrained(ckpt).eval().to(device)
# Initialize VAE (only Decoder will be used) & Noise Scheduler
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").eval().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(
hf_hub_download(repo_id="rizavelioglu/tryoffdiff", filename="scheduler/scheduler_config_v2.json", force_download=False)
)
scheduler.is_scale_input_called = True # suppress warning
# Upscaler model
upscaler = UpscalerESRGAN(
model_path=Path(hf_hub_download(repo_id="philz1337x/upscaler", filename="4x-UltraSharp.pth")),
device=torch.device(device),
dtype=torch.float32,
)
# Model configurations and loading
models = {}
model_paths = {
"upper": {"class_name": "TryOffDiffv2_single", "path": "tryoffdiffv2_upper.pth"}, # internal code: model_20250213_134430
"lower": {"class_name": "TryOffDiffv2_single", "path": "tryoffdiffv2_lower.pth"}, # internal code: model_20250213_134130
"dress": {"class_name": "TryOffDiffv2_single", "path": "tryoffdiffv2_dress.pth"}, # internal code: model_20250213_133554
"multi": {"class_name": "TryOffDiffv2", "path": "tryoffdiffv2_multi.pth"}, # internal code: model_20250310_155608
}
for name, cfg in model_paths.items():
models[name] = load_model(cfg["class_name"], cfg["path"])
torch.cuda.empty_cache()
# Create tabbed interface
demo = gr.TabbedInterface(
[create_multi_tab(), create_upper_tab(), create_lower_tab(), create_dress_tab()],
["Multi-Garment", "Upper-Body", "Lower-Body", "Dress"],
css=custom_css,
)
demo.launch(ssr_mode=False)
|