Spaces:
Running
on
Zero
Running
on
Zero
rizavelioglu
commited on
Commit
·
8eb415a
1
Parent(s):
1f9630e
v2
Browse files- bump versions
- add v2 models
- add more examples
- README.md +1 -1
- app.py +399 -134
- esrgan_model.py +0 -1
- examples/052036_0.jpg +0 -0
- examples/052606_0.jpg +0 -0
- examples/053480_0.jpg +0 -0
- examples/053682_0.jpg +0 -0
- model.py +90 -0
- requirements.txt +5 -7
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🔥
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: other
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.32.1
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: other
|
app.py
CHANGED
@@ -1,160 +1,379 @@
|
|
1 |
import os
|
|
|
2 |
from pathlib import Path
|
3 |
|
4 |
-
from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
|
5 |
-
from esrgan_model import UpscalerESRGAN
|
6 |
-
import gradio as gr
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
import spaces
|
9 |
import torch
|
10 |
-
import torch.nn as nn
|
11 |
from torchvision.io import read_image
|
12 |
import torchvision.transforms.v2 as transforms
|
13 |
from torchvision.utils import make_grid
|
14 |
-
from transformers import SiglipImageProcessor, SiglipVisionModel
|
15 |
-
|
16 |
-
|
17 |
-
class TryOffDiff(nn.Module):
|
18 |
-
def __init__(self):
|
19 |
-
super().__init__()
|
20 |
-
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
21 |
-
self.transformer = torch.nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True)
|
22 |
-
self.proj = nn.Linear(1024, 77)
|
23 |
-
self.norm = nn.LayerNorm(768)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
return self.unet(noisy_latents, t, encoder_hidden_states=cond_emb).sample
|
33 |
|
|
|
34 |
|
|
|
35 |
class PadToSquare:
|
36 |
def __call__(self, img):
|
37 |
-
_, h, w = img.shape
|
38 |
max_side = max(h, w)
|
39 |
pad_h = (max_side - h) // 2
|
40 |
pad_w = (max_side - w) // 2
|
41 |
padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h)
|
42 |
return transforms.functional.pad(img, padding, padding_mode="edge")
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
)
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
|
|
|
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
# Define image generation function
|
95 |
@spaces.GPU(duration=10)
|
96 |
@torch.no_grad()
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
# Configure scheduler
|
101 |
-
scheduler = EulerDiscreteScheduler.from_pretrained(path_scheduler)
|
102 |
-
scheduler.is_scale_input_called = True # suppress warning
|
103 |
scheduler.set_timesteps(num_inference_steps)
|
104 |
-
|
105 |
-
# Set seed for reproducibility
|
106 |
generator = torch.Generator(device=device).manual_seed(seed)
|
107 |
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
|
108 |
|
109 |
# Process input image
|
110 |
cond_image = img_enc_transform(read_image(input_image))
|
111 |
-
inputs = {k: v.to(
|
112 |
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
#
|
|
|
|
|
|
|
115 |
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
|
116 |
|
117 |
-
# Diffusion denoising loop with mixed precision for efficiency
|
118 |
with torch.autocast(device):
|
119 |
for t in scheduler.timesteps:
|
120 |
-
|
121 |
-
|
122 |
-
noise_pred =
|
123 |
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
|
124 |
-
else:
|
125 |
-
|
126 |
-
noise_pred = net(x, t, cond_emb)
|
127 |
|
128 |
# Scheduler step
|
129 |
scheduler_output = scheduler.step(noise_pred, t, x)
|
130 |
x = scheduler_output.prev_sample
|
131 |
|
132 |
# Decode predictions from latent space
|
133 |
-
decoded = vae.decode(1 /
|
134 |
images = (decoded / 2 + 0.5).cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
#
|
|
|
|
|
137 |
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
|
138 |
output_image = transforms.ToPILImage()(grid)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
if
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
<
|
151 |
-
<
|
|
|
|
|
|
|
|
|
|
|
152 |
"""
|
153 |
article = r"""
|
154 |
-
|
155 |
-
|
156 |
-
<br>**Citation** <br>If you find our work useful in your research, please consider giving a star ⭐ and
|
157 |
-
a citation:
|
158 |
```
|
159 |
@article{velioglu2024tryoffdiff,
|
160 |
title = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models},
|
@@ -163,36 +382,82 @@ a citation:
|
|
163 |
year = {2024},
|
164 |
note = {\url{https://doi.org/nt3n}}
|
165 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
```
|
167 |
"""
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
)
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import time
|
3 |
from pathlib import Path
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
import torch
|
|
|
6 |
from torchvision.io import read_image
|
7 |
import torchvision.transforms.v2 as transforms
|
8 |
from torchvision.utils import make_grid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
import gradio as gr
|
11 |
+
from diffusers import AutoencoderKL, EulerDiscreteScheduler
|
12 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
13 |
+
from huggingface_hub import hf_hub_download
|
14 |
+
import spaces
|
15 |
|
16 |
+
from esrgan_model import UpscalerESRGAN
|
17 |
+
from model import create_model
|
|
|
18 |
|
19 |
+
device = "cuda"
|
20 |
|
21 |
+
# Custom transform to pad images to square
|
22 |
class PadToSquare:
|
23 |
def __call__(self, img):
|
24 |
+
_, h, w = img.shape
|
25 |
max_side = max(h, w)
|
26 |
pad_h = (max_side - h) // 2
|
27 |
pad_w = (max_side - w) // 2
|
28 |
padding = (pad_w, pad_h, max_side - w - pad_w, max_side - h - pad_h)
|
29 |
return transforms.functional.pad(img, padding, padding_mode="edge")
|
30 |
|
31 |
+
# Timer decorator
|
32 |
+
def timer_func(func):
|
33 |
+
def wrapper(*args, **kwargs):
|
34 |
+
t0 = time.time()
|
35 |
+
result = func(*args, **kwargs)
|
36 |
+
print(f"{func.__name__} took {time.time() - t0:.2f} seconds")
|
37 |
+
return result
|
38 |
+
return wrapper
|
39 |
|
40 |
+
@timer_func
|
41 |
+
def load_model(model_class_name, model_filename, repo_id: str = "rizavelioglu/tryoffdiff"):
|
42 |
+
path_model = hf_hub_download(repo_id=repo_id, filename=model_filename, force_download=False)
|
43 |
+
state_dict = torch.load(path_model, weights_only=True, map_location=device)
|
44 |
+
state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()}
|
45 |
+
model = create_model(model_class_name).to(device)
|
46 |
+
# model = torch.compile(model)
|
47 |
+
model.load_state_dict(state_dict, strict=True)
|
48 |
+
return model.eval()
|
49 |
+
|
50 |
+
@spaces.GPU(duration=10)
|
51 |
+
@torch.no_grad()
|
52 |
+
@timer_func
|
53 |
+
def generate_multi_image(input_image, garment_types, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
|
54 |
+
label_map = {"Upper-Body": 0, "Lower-Body": 1, "Dress": 2}
|
55 |
+
valid_single = ["Upper-Body", "Lower-Body", "Dress"]
|
56 |
+
valid_tuple = ["Upper-Body", "Lower-Body"]
|
57 |
+
|
58 |
+
if not garment_types:
|
59 |
+
raise gr.Error("Please select at least one garment type.")
|
60 |
+
if len(garment_types) == 1 and garment_types[0] in valid_single:
|
61 |
+
selected, label_indices = garment_types, [label_map[garment_types[0]]]
|
62 |
+
elif sorted(garment_types) == sorted(valid_tuple):
|
63 |
+
selected, label_indices = valid_tuple, [label_map[t] for t in valid_tuple]
|
64 |
+
else:
|
65 |
+
raise gr.Error("Invalid selection. Choose one garment type or Upper-Body and Lower-Body together.")
|
66 |
+
|
67 |
+
batch_size = len(selected)
|
68 |
+
scheduler.set_timesteps(num_inference_steps)
|
69 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
70 |
+
x = torch.randn(batch_size, 4, 64, 64, generator=generator, device=device)
|
71 |
+
|
72 |
+
# Process inputs
|
73 |
+
cond_image = img_enc_transform(read_image(input_image))
|
74 |
+
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
|
75 |
+
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
|
76 |
+
cond_emb = cond_emb.expand(batch_size, *cond_emb.shape[1:])
|
77 |
+
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
|
78 |
+
label = torch.tensor(label_indices, device=device, dtype=torch.int64)
|
79 |
+
model = models["multi"]
|
80 |
+
|
81 |
+
with torch.autocast(device):
|
82 |
+
for t in scheduler.timesteps:
|
83 |
+
t = t.to(device) # Ensure t is on the correct device
|
84 |
+
if guidance_scale > 1:
|
85 |
+
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb]), torch.cat([label, label])).chunk(2)
|
86 |
+
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0]) # Classifier-free guidance
|
87 |
+
else:
|
88 |
+
noise_pred = model(x, t, cond_emb, label) # Standard prediction
|
89 |
|
90 |
+
# Scheduler step
|
91 |
+
scheduler_output = scheduler.step(noise_pred, t, x)
|
92 |
+
x = scheduler_output.prev_sample
|
93 |
|
94 |
+
# Decode predictions from latent space
|
95 |
+
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
|
96 |
+
images = (decoded / 2 + 0.5).cpu()
|
97 |
+
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
|
98 |
+
output_image = transforms.ToPILImage()(grid)
|
99 |
+
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
|
100 |
|
|
|
101 |
@spaces.GPU(duration=10)
|
102 |
@torch.no_grad()
|
103 |
+
@timer_func
|
104 |
+
def generate_upper_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
|
105 |
+
model = models["upper"]
|
|
|
|
|
|
|
106 |
scheduler.set_timesteps(num_inference_steps)
|
107 |
+
scheduler.timesteps = scheduler.timesteps.to(device)
|
|
|
108 |
generator = torch.Generator(device=device).manual_seed(seed)
|
109 |
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
|
110 |
|
111 |
# Process input image
|
112 |
cond_image = img_enc_transform(read_image(input_image))
|
113 |
+
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
|
114 |
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
|
115 |
+
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
|
116 |
+
|
117 |
+
with torch.autocast(device):
|
118 |
+
for t in scheduler.timesteps:
|
119 |
+
t = t.to(device) # Ensure t is on the correct device
|
120 |
+
if guidance_scale > 1: # Classifier-free guidance
|
121 |
+
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
|
122 |
+
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
|
123 |
+
else: # Standard prediction
|
124 |
+
noise_pred = model(x, t, cond_emb)
|
125 |
+
|
126 |
+
# Scheduler step
|
127 |
+
scheduler_output = scheduler.step(noise_pred, t, x)
|
128 |
+
x = scheduler_output.prev_sample
|
129 |
+
|
130 |
+
# Decode predictions from latent space
|
131 |
+
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
|
132 |
+
images = (decoded / 2 + 0.5).cpu()
|
133 |
+
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
|
134 |
+
output_image = transforms.ToPILImage()(grid)
|
135 |
+
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
|
136 |
+
|
137 |
+
@spaces.GPU(duration=10)
|
138 |
+
@torch.no_grad()
|
139 |
+
@timer_func
|
140 |
+
def generate_lower_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
|
141 |
+
model = models["lower"]
|
142 |
+
scheduler.set_timesteps(num_inference_steps)
|
143 |
+
scheduler.timesteps = scheduler.timesteps.to(device)
|
144 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
145 |
+
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
|
146 |
|
147 |
+
# Process input image
|
148 |
+
cond_image = img_enc_transform(read_image(input_image))
|
149 |
+
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
|
150 |
+
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
|
151 |
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
|
152 |
|
|
|
153 |
with torch.autocast(device):
|
154 |
for t in scheduler.timesteps:
|
155 |
+
t = t.to(device) # Ensure t is on the correct device
|
156 |
+
if guidance_scale > 1: # Classifier-free guidance
|
157 |
+
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
|
158 |
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
|
159 |
+
else: # Standard prediction
|
160 |
+
noise_pred = model(x, t, cond_emb)
|
|
|
161 |
|
162 |
# Scheduler step
|
163 |
scheduler_output = scheduler.step(noise_pred, t, x)
|
164 |
x = scheduler_output.prev_sample
|
165 |
|
166 |
# Decode predictions from latent space
|
167 |
+
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
|
168 |
images = (decoded / 2 + 0.5).cpu()
|
169 |
+
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
|
170 |
+
output_image = transforms.ToPILImage()(grid)
|
171 |
+
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
|
172 |
+
|
173 |
+
@spaces.GPU(duration=10)
|
174 |
+
@torch.no_grad()
|
175 |
+
@timer_func
|
176 |
+
def generate_dress_image(input_image, seed=42, guidance_scale=2.0, num_inference_steps=50, is_upscale=False):
|
177 |
+
model = models["dress"]
|
178 |
+
scheduler.set_timesteps(num_inference_steps)
|
179 |
+
scheduler.timesteps = scheduler.timesteps.to(device)
|
180 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
181 |
+
x = torch.randn(1, 4, 64, 64, generator=generator, device=device)
|
182 |
+
|
183 |
+
# Process input image
|
184 |
+
cond_image = img_enc_transform(read_image(input_image))
|
185 |
+
inputs = {k: v.to(device) for k, v in img_processor(images=cond_image, return_tensors="pt").items()}
|
186 |
+
cond_emb = img_enc(**inputs).last_hidden_state.to(device)
|
187 |
+
uncond_emb = torch.zeros_like(cond_emb) if guidance_scale > 1 else None
|
188 |
+
|
189 |
+
with torch.autocast(device):
|
190 |
+
for t in scheduler.timesteps:
|
191 |
+
t = t.to(device) # Ensure t is on the correct device
|
192 |
+
if guidance_scale > 1: # Classifier-free guidance
|
193 |
+
noise_pred = model(torch.cat([x] * 2), t, torch.cat([uncond_emb, cond_emb])).chunk(2)
|
194 |
+
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
|
195 |
+
else: # Standard prediction
|
196 |
+
noise_pred = model(x, t, cond_emb)
|
197 |
+
|
198 |
+
# Scheduler step
|
199 |
+
scheduler_output = scheduler.step(noise_pred, t, x)
|
200 |
+
x = scheduler_output.prev_sample
|
201 |
|
202 |
+
# Decode predictions from latent space
|
203 |
+
decoded = vae.decode(1 / vae.config.scaling_factor * scheduler_output.pred_original_sample).sample
|
204 |
+
images = (decoded / 2 + 0.5).cpu()
|
205 |
grid = make_grid(images, nrow=len(images), normalize=True, scale_each=True)
|
206 |
output_image = transforms.ToPILImage()(grid)
|
207 |
+
return upscaler(output_image) if is_upscale else output_image # Optionally upscale the output image
|
208 |
+
|
209 |
+
def create_multi_tab():
|
210 |
+
description = r"""
|
211 |
+
<table class="description-table">
|
212 |
+
<tr>
|
213 |
+
<td width="50%">
|
214 |
+
In total, 4 models are available for generating garments (one in each tab):<br>
|
215 |
+
- <b>Multi-Garment</b>: Generate multiple garments (e.g., upper-body and lower-body) sequentially.<br>
|
216 |
+
- <b>Upper-Body</b>: Generate upper-body garments (e.g., tops, jackets, etc.).<br>
|
217 |
+
- <b>Lower-Body</b>: Generate lower-body garments (e.g., pants, skirts, etc.).<br>
|
218 |
+
- <b>Dress</b>: Generate dresses.<br>
|
219 |
+
</td>
|
220 |
+
<td width="50%">
|
221 |
+
<b>How to use:</b><br>
|
222 |
+
1. Upload a reference image,<br>
|
223 |
+
2. Adjust the parameters as needed,<br>
|
224 |
+
3. Click "Generate" to create the garment(s).<br>
|
225 |
+
💡 Individual models perform slightly better than the multi-garment model, but the latter is more versatile.
|
226 |
+
</td>
|
227 |
+
</tr>
|
228 |
+
</table>
|
229 |
+
"""
|
230 |
+
examples = [
|
231 |
+
["examples/048851_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
232 |
+
["examples/048851_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
|
233 |
+
["examples/048588_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
234 |
+
["examples/048588_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
|
235 |
+
["examples/048643_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
236 |
+
["examples/048643_0.jpg", ["Lower-Body"], 42, 2.0, 20, False],
|
237 |
+
["examples/048737_0.jpg", ["Dress"], 42, 2.0, 20, False],
|
238 |
+
["examples/048737_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
239 |
+
["examples/048690_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
240 |
+
["examples/048690_0.jpg", ["Lower-Body"], 42, 2.0, 20, False],
|
241 |
+
["examples/048691_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
242 |
+
["examples/048691_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
|
243 |
+
["examples/048732_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
244 |
+
["examples/048754_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
245 |
+
["examples/048799_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
246 |
+
["examples/048811_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
247 |
+
["examples/048821_0.jpg", ["Upper-Body", "Lower-Body"], 42, 2.0, 20, False],
|
248 |
+
["examples/048821_0.jpg", ["Upper-Body"], 42, 2.0, 20, False],
|
249 |
+
]
|
250 |
+
|
251 |
+
with gr.Blocks() as tab:
|
252 |
+
gr.Markdown(title)
|
253 |
+
gr.Markdown(description)
|
254 |
+
with gr.Row():
|
255 |
+
with gr.Column():
|
256 |
+
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
|
257 |
+
with gr.Column(min_width=250):
|
258 |
+
garment_type = gr.CheckboxGroup(["Upper-Body", "Lower-Body", "Dress"], label="Select Garment Type", value=["Upper-Body", "Lower-Body"])
|
259 |
+
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
|
260 |
+
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
|
261 |
+
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
|
262 |
+
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
|
263 |
+
submit_btn = gr.Button("Generate")
|
264 |
+
with gr.Column():
|
265 |
+
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
|
266 |
+
gr.Examples(examples=examples, inputs=[input_image, garment_type, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_multi_image, cache_examples=False, examples_per_page=2)
|
267 |
+
gr.Markdown(article)
|
268 |
+
submit_btn.click(
|
269 |
+
fn=generate_multi_image,
|
270 |
+
inputs=[input_image, garment_type, seed, guidance_scale, inference_steps, upscale],
|
271 |
+
outputs=output_image
|
272 |
+
)
|
273 |
+
return tab
|
274 |
|
275 |
+
def create_upper_tab():
|
276 |
+
examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in os.listdir("examples/") if img_filename.endswith("_0.jpg")]
|
277 |
+
examples += [
|
278 |
+
["examples/00084_00.jpg", 42, 2.0, 20, False],
|
279 |
+
["examples/00254_00.jpg", 42, 2.0, 20, False],
|
280 |
+
["examples/00397_00.jpg", 42, 2.0, 20, False],
|
281 |
+
["examples/01320_00.jpg", 42, 2.0, 20, False],
|
282 |
+
["examples/02390_00.jpg", 42, 2.0, 20, False],
|
283 |
+
["examples/14227_00.jpg", 42, 2.0, 20, False],
|
284 |
+
]
|
285 |
+
with gr.Blocks() as tab:
|
286 |
+
gr.Markdown(title)
|
287 |
+
with gr.Row():
|
288 |
+
with gr.Column():
|
289 |
+
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
|
290 |
+
with gr.Column(min_width=250):
|
291 |
+
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
|
292 |
+
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
|
293 |
+
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
|
294 |
+
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
|
295 |
+
submit_btn = gr.Button("Generate")
|
296 |
+
with gr.Column():
|
297 |
+
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
|
298 |
+
gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_upper_image, cache_examples=False, examples_per_page=2)
|
299 |
+
gr.Markdown(article)
|
300 |
+
submit_btn.click(
|
301 |
+
fn=generate_upper_image,
|
302 |
+
inputs=[input_image, seed, guidance_scale, inference_steps, upscale],
|
303 |
+
outputs=output_image
|
304 |
+
)
|
305 |
+
return tab
|
306 |
|
307 |
+
def create_lower_tab():
|
308 |
+
examples = [[f"examples/{img_filename}", 42, 2.0, 20, False] for img_filename in os.listdir("examples/") if img_filename.endswith("_0.jpg")]
|
309 |
+
with gr.Blocks() as tab:
|
310 |
+
gr.Markdown(title)
|
311 |
+
with gr.Row():
|
312 |
+
with gr.Column():
|
313 |
+
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
|
314 |
+
with gr.Column(min_width=250):
|
315 |
+
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
|
316 |
+
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
|
317 |
+
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
|
318 |
+
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
|
319 |
+
submit_btn = gr.Button("Generate")
|
320 |
+
with gr.Column():
|
321 |
+
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
|
322 |
+
gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_lower_image, cache_examples=False, examples_per_page=2)
|
323 |
+
gr.Markdown(article)
|
324 |
+
submit_btn.click(
|
325 |
+
fn=generate_lower_image,
|
326 |
+
inputs=[input_image, seed, guidance_scale, inference_steps, upscale],
|
327 |
+
outputs=output_image
|
328 |
+
)
|
329 |
+
return tab
|
330 |
|
331 |
+
def create_dress_tab():
|
332 |
+
examples = [
|
333 |
+
["examples/053480_0.jpg", 42, 2.0, 20, False],
|
334 |
+
["examples/048737_0.jpg", 42, 2.0, 20, False],
|
335 |
+
["examples/048811_0.jpg", 42, 2.0, 20, False],
|
336 |
+
["examples/053733_0.jpg", 42, 2.0, 20, False],
|
337 |
+
["examples/052606_0.jpg", 42, 2.0, 20, False],
|
338 |
+
["examples/053682_0.jpg", 42, 2.0, 20, False],
|
339 |
+
["examples/052036_0.jpg", 42, 2.0, 20, False],
|
340 |
+
["examples/052644_0.jpg", 42, 2.0, 20, False],
|
341 |
+
]
|
342 |
+
with gr.Blocks() as tab:
|
343 |
+
gr.Markdown(title)
|
344 |
+
with gr.Row():
|
345 |
+
with gr.Column():
|
346 |
+
input_image = gr.Image(type="filepath", label="Reference Image", height=384, width=384)
|
347 |
+
with gr.Column(min_width=250):
|
348 |
+
seed = gr.Slider(value=42, minimum=0, maximum=1e6, step=1, label="Seed")
|
349 |
+
guidance_scale = gr.Slider(value=2.0, minimum=1, maximum=5, step=0.5, label="Guidance Scale(s)", info="No guidance at s=1.")
|
350 |
+
inference_steps = gr.Slider(value=20, minimum=5, maximum=1000, step=10, label="# of Inference Steps")
|
351 |
+
upscale = gr.Checkbox(value=False, label="Upscale Output", info="Upscale output by 4x (2048x2048) using an off-the-shelf model.")
|
352 |
+
submit_btn = gr.Button("Generate")
|
353 |
+
with gr.Column():
|
354 |
+
output_image = gr.Image(type="pil", label="Generated Garment", height=384, width=384)
|
355 |
+
gr.Examples(examples=examples, inputs=[input_image, seed, guidance_scale, inference_steps, upscale], outputs=output_image, fn=generate_dress_image, cache_examples=False, examples_per_page=2)
|
356 |
+
gr.Markdown(article)
|
357 |
+
submit_btn.click(
|
358 |
+
fn=generate_dress_image,
|
359 |
+
inputs=[input_image, seed, guidance_scale, inference_steps, upscale],
|
360 |
+
outputs=output_image
|
361 |
+
)
|
362 |
+
return tab
|
363 |
|
364 |
+
# UI elements
|
365 |
+
title = f"""
|
366 |
+
<div class='center-header' style="flex-direction: row; gap: 1.5em;">
|
367 |
+
<h1 style="font-size:2.2em; margin-bottom:0.1em;">Virtual Try-Off Generator</h1>
|
368 |
+
<a href='https://rizavelioglu.github.io/tryoffdiff' style="align-self:center;">
|
369 |
+
<button style="background-color:#1976d2; color:white; font-weight:bold; border:none; border-radius:4px; padding:4px 10px; font-size:1.1em; cursor:pointer;">
|
370 |
+
🔗 Project page
|
371 |
+
</button>
|
372 |
+
</a>
|
373 |
+
</div>
|
374 |
"""
|
375 |
article = r"""
|
376 |
+
**Citation**<br>If you use this work, please give a star ⭐ and a citation:
|
|
|
|
|
|
|
377 |
```
|
378 |
@article{velioglu2024tryoffdiff,
|
379 |
title = {TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models},
|
|
|
382 |
year = {2024},
|
383 |
note = {\url{https://doi.org/nt3n}}
|
384 |
}
|
385 |
+
@article{velioglu2025enhancing,
|
386 |
+
title = {Enhancing Person-to-Person Virtual Try-On with Multi-Garment Virtual Try-Off},
|
387 |
+
author = {Velioglu, Riza and Bevandic, Petra and Chan, Robin and Hammer, Barbara},
|
388 |
+
journal = {arXiv},
|
389 |
+
year = {2025},
|
390 |
+
note = {\url{https://doi.org/pn67}}
|
391 |
+
}
|
392 |
```
|
393 |
"""
|
394 |
+
# Custom CSS for proper styling
|
395 |
+
custom_css = """
|
396 |
+
.center-header {
|
397 |
+
display: flex;
|
398 |
+
align-items: center;
|
399 |
+
justify-content: center;
|
400 |
+
margin: 0 0 20px 0;
|
401 |
+
}
|
402 |
+
.center-header h1 {
|
403 |
+
margin: 0;
|
404 |
+
text-align: center;
|
405 |
+
}
|
406 |
+
.description-table {
|
407 |
+
width: 100%;
|
408 |
+
border-collapse: collapse;
|
409 |
+
}
|
410 |
+
.description-table td {
|
411 |
+
padding: 10px;
|
412 |
+
vertical-align: top;
|
413 |
+
}
|
414 |
+
"""
|
415 |
+
|
416 |
+
if __name__ == "__main__":
|
417 |
+
# Image Encoder and transforms
|
418 |
+
img_enc_transform = transforms.Compose(
|
419 |
+
[
|
420 |
+
PadToSquare(), # Custom transform to pad the image to a square
|
421 |
+
transforms.Resize((512, 512)),
|
422 |
+
transforms.ToDtype(torch.float32, scale=True),
|
423 |
+
transforms.Normalize(mean=[0.5], std=[0.5]),
|
424 |
+
]
|
425 |
+
)
|
426 |
+
ckpt = "google/siglip-base-patch16-512"
|
427 |
+
img_processor = SiglipImageProcessor.from_pretrained(ckpt, do_resize=False, do_rescale=False, do_normalize=False)
|
428 |
+
img_enc = SiglipVisionModel.from_pretrained(ckpt).eval().to(device)
|
429 |
+
|
430 |
+
# Initialize VAE (only Decoder will be used) & Noise Scheduler
|
431 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").eval().to(device)
|
432 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(
|
433 |
+
hf_hub_download(repo_id="rizavelioglu/tryoffdiff", filename="scheduler/scheduler_config_v2.json", force_download=False)
|
434 |
+
)
|
435 |
+
scheduler.is_scale_input_called = True # suppress warning
|
436 |
+
|
437 |
+
# Upscaler model
|
438 |
+
upscaler = UpscalerESRGAN(
|
439 |
+
model_path=Path(hf_hub_download(repo_id="philz1337x/upscaler", filename="4x-UltraSharp.pth")),
|
440 |
+
device=torch.device(device),
|
441 |
+
dtype=torch.float32,
|
442 |
+
)
|
443 |
+
|
444 |
+
# Model configurations and loading
|
445 |
+
models = {}
|
446 |
+
model_paths = {
|
447 |
+
"upper": {"class_name": "TryOffDiffv2_single", "path": "tryoffdiffv2_upper.pth"}, # internal code: model_20250213_134430
|
448 |
+
"lower": {"class_name": "TryOffDiffv2_single", "path": "tryoffdiffv2_lower.pth"}, # internal code: model_20250213_134130
|
449 |
+
"dress": {"class_name": "TryOffDiffv2_single", "path": "tryoffdiffv2_dress.pth"}, # internal code: model_20250213_133554
|
450 |
+
"multi": {"class_name": "TryOffDiffv2", "path": "tryoffdiffv2_multi.pth"}, # internal code: model_20250310_155608
|
451 |
+
}
|
452 |
+
for name, cfg in model_paths.items():
|
453 |
+
models[name] = load_model(cfg["class_name"], cfg["path"])
|
454 |
+
torch.cuda.empty_cache()
|
455 |
+
|
456 |
+
# Create tabbed interface
|
457 |
+
demo = gr.TabbedInterface(
|
458 |
+
[create_multi_tab(), create_upper_tab(), create_lower_tab(), create_dress_tab()],
|
459 |
+
["Multi-Garment", "Upper-Body", "Lower-Body", "Dress"],
|
460 |
+
css=custom_css,
|
461 |
+
)
|
462 |
+
|
463 |
+
demo.launch(ssr_mode=False)
|
esrgan_model.py
CHANGED
@@ -15,7 +15,6 @@ import numpy.typing as npt
|
|
15 |
import torch
|
16 |
import torch.nn as nn
|
17 |
from PIL import Image
|
18 |
-
from huggingface_hub import hf_hub_download
|
19 |
|
20 |
|
21 |
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
|
|
|
15 |
import torch
|
16 |
import torch.nn as nn
|
17 |
from PIL import Image
|
|
|
18 |
|
19 |
|
20 |
def conv_block(in_nc: int, out_nc: int) -> nn.Sequential:
|
examples/052036_0.jpg
ADDED
![]() |
examples/052606_0.jpg
ADDED
![]() |
examples/053480_0.jpg
ADDED
![]() |
examples/053682_0.jpg
ADDED
![]() |
model.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum, unique
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torchvision.transforms.v2 as transforms
|
6 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, UNet2DModel
|
7 |
+
from torch import Tensor, nn
|
8 |
+
from transformers import (
|
9 |
+
AutoImageProcessor,
|
10 |
+
AutoModel,
|
11 |
+
AutoProcessor,
|
12 |
+
CLIPImageProcessor,
|
13 |
+
CLIPVisionModel,
|
14 |
+
SiglipImageProcessor,
|
15 |
+
SiglipVisionModel,
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
class TryOffDiff(nn.Module):
|
20 |
+
def __init__(self):
|
21 |
+
super().__init__()
|
22 |
+
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
23 |
+
self.transformer = torch.nn.TransformerEncoderLayer(d_model=768, nhead=8, batch_first=True)
|
24 |
+
self.proj = nn.Linear(1024, 77)
|
25 |
+
self.norm = nn.LayerNorm(768)
|
26 |
+
|
27 |
+
def forward(self, noisy_latents, t, cond_emb):
|
28 |
+
cond_emb = self.transformer(cond_emb)
|
29 |
+
cond_emb = self.proj(cond_emb.transpose(1, 2))
|
30 |
+
cond_emb = self.norm(cond_emb.transpose(1, 2))
|
31 |
+
return self.unet(noisy_latents, t, encoder_hidden_states=cond_emb).sample
|
32 |
+
|
33 |
+
class TryOffDiffv2(nn.Module):
|
34 |
+
def __init__(self):
|
35 |
+
super().__init__()
|
36 |
+
self.unet = UNet2DConditionModel(
|
37 |
+
sample_size=64,
|
38 |
+
in_channels=4,
|
39 |
+
out_channels=4,
|
40 |
+
layers_per_block=2,
|
41 |
+
block_out_channels=(320, 640, 1280, 1280),
|
42 |
+
down_block_types=(
|
43 |
+
"CrossAttnDownBlock2D",
|
44 |
+
"CrossAttnDownBlock2D",
|
45 |
+
"CrossAttnDownBlock2D",
|
46 |
+
"DownBlock2D",
|
47 |
+
),
|
48 |
+
up_block_types=(
|
49 |
+
"UpBlock2D",
|
50 |
+
"CrossAttnUpBlock2D",
|
51 |
+
"CrossAttnUpBlock2D",
|
52 |
+
"CrossAttnUpBlock2D",
|
53 |
+
),
|
54 |
+
cross_attention_dim=768,
|
55 |
+
class_embed_type=None,
|
56 |
+
num_class_embeds=3,
|
57 |
+
)
|
58 |
+
# Load the pretrained weights into the custom model, skipping incompatible keys
|
59 |
+
pretrained_state_dict = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet").state_dict()
|
60 |
+
self.unet.load_state_dict(pretrained_state_dict, strict=False)
|
61 |
+
|
62 |
+
self.proj = nn.Linear(1024, 77)
|
63 |
+
self.norm = nn.LayerNorm(768)
|
64 |
+
|
65 |
+
def forward(self, noisy_latents, t, cond_emb, class_labels):
|
66 |
+
cond_emb = self.proj(cond_emb.transpose(1, 2))
|
67 |
+
cond_emb = self.norm(cond_emb.transpose(1, 2))
|
68 |
+
return self.unet(noisy_latents, t, encoder_hidden_states=cond_emb, class_labels=class_labels).sample
|
69 |
+
|
70 |
+
class TryOffDiffv2Single(nn.Module):
|
71 |
+
def __init__(self):
|
72 |
+
super().__init__()
|
73 |
+
self.unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
74 |
+
self.proj = nn.Linear(1024, 77)
|
75 |
+
self.norm = nn.LayerNorm(768)
|
76 |
+
|
77 |
+
def forward(self, noisy_latents, t, cond_emb):
|
78 |
+
cond_emb = self.proj(cond_emb.transpose(1, 2))
|
79 |
+
cond_emb = self.norm(cond_emb.transpose(1, 2))
|
80 |
+
return self.unet(noisy_latents, t, encoder_hidden_states=cond_emb).sample
|
81 |
+
|
82 |
+
@unique
|
83 |
+
class ModelName(Enum):
|
84 |
+
TryOffDiff = TryOffDiff
|
85 |
+
TryOffDiffv2 = TryOffDiffv2
|
86 |
+
TryOffDiffv2Single = TryOffDiffv2Single
|
87 |
+
|
88 |
+
def create_model(model_name: str, **kwargs: Any) -> Any:
|
89 |
+
model_class = ModelName[model_name].value
|
90 |
+
return model_class(**kwargs)
|
requirements.txt
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
-
torch>=2.
|
2 |
torchvision>=0.20.1
|
3 |
-
diffusers>=0.
|
4 |
-
transformers>=4.
|
5 |
-
|
6 |
-
|
7 |
-
huggingface-hub>=0.26.2
|
8 |
-
accelerate>=1.1.1
|
|
|
1 |
+
torch>=2.5.1
|
2 |
torchvision>=0.20.1
|
3 |
+
diffusers>=0.33.1
|
4 |
+
transformers>=4.49.0
|
5 |
+
huggingface-hub>=0.30.2
|
6 |
+
accelerate>=1.2.1
|
|
|
|