File size: 7,669 Bytes
3d58577
 
 
 
 
 
 
 
 
88763cc
3d58577
 
 
3eeacb0
3d58577
9b8d36a
3d58577
 
 
 
5d0e917
 
3d58577
 
 
 
 
 
 
 
 
5d0e917
3d58577
 
 
 
 
 
 
5d0e917
 
3d58577
5d0e917
3d58577
5d0e917
97bdbba
 
 
 
 
 
 
 
 
 
5d0e917
 
97bdbba
3d58577
9b8d36a
3d58577
3eeacb0
3d58577
 
 
 
 
 
 
 
 
 
9b8d36a
3d58577
 
5d0e917
3d58577
 
 
 
5d0e917
3d58577
 
5d0e917
3d58577
 
97bdbba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d58577
 
9b8d36a
3d58577
 
 
 
 
 
 
52238c9
 
 
e2a857b
 
3d58577
9b8d36a
3d58577
 
 
 
 
 
 
9b8d36a
 
 
be23bee
52238c9
 
be23bee
 
 
 
9b8d36a
 
 
be23bee
80e2814
be23bee
 
9b8d36a
 
 
 
 
 
3d58577
 
5d0e917
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import gradio as gr
import time
import logging
import torch
from sys import platform
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from transformers.utils import is_flash_attn_2_available
from languages import get_language_names
from subtitle_manager import Subtitle
import spaces

logging.basicConfig(level=logging.INFO)
last_model = None
pipe = None

def write_file(output_file, subtitle):
    with open(output_file, 'w', encoding='utf-8') as f:
        f.write(subtitle)

def create_pipe(model, flash):
    # Load the model into RAM first
    torch_dtype = torch.float32  # Load onto CPU with float32 precision
    model_id = model

    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_id,
        torch_dtype=torch_dtype,
        low_cpu_mem_usage=True,
        use_safetensors=True,
        attn_implementation="flash_attention_2" if flash and is_flash_attn_2_available() else "sdpa",
    )
    
    processor = AutoProcessor.from_pretrained(model_id)

    pipe = pipeline(
        "automatic-speech-recognition",
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        torch_dtype=torch_dtype,  # Keep in CPU until GPU is requested
        device="cpu",  # Initially stay on CPU
    )
    return pipe, model  # Return both pipe and model for later GPU switch

def move_to_gpu(model):
    if torch.cuda.is_available():
        device = "cuda:0"
        torch_dtype = torch.float16  # Use float16 precision on GPU
        model.to(device, dtype=torch_dtype)
    elif platform == "darwin":
        device = "mps"
        model.to(device)
    else:
        device = "cpu"
    
    return device

@spaces.GPU
def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleFiles, microphoneData, task, flash,
                                     chunk_length_s, batch_size, progress=gr.Progress()):
    global last_model
    global pipe

    progress(0, desc="Loading Audio..")
    logging.info(f"urlData:{urlData}")
    logging.info(f"multipleFiles:{multipleFiles}")
    logging.info(f"microphoneData:{microphoneData}")
    logging.info(f"task: {task}")
    logging.info(f"is_flash_attn_2_available: {is_flash_attn_2_available()}")
    logging.info(f"chunk_length_s: {chunk_length_s}")
    logging.info(f"batch_size: {batch_size}")

    if last_model is None:
        logging.info("first model")
        progress(0.1, desc="Loading Model..")
        pipe, model = create_pipe(modelName, flash)
    elif modelName != last_model:
        logging.info("new model")
        torch.cuda.empty_cache()
        progress(0.1, desc="Loading Model..")
        pipe, model = create_pipe(modelName, flash)
    else:
        logging.info("Model not changed")

    last_model = modelName

    # Now move the model to GPU after the pipe is created, within the function's context
    with torch.inference_mode():
        device = move_to_gpu(pipe.model)

        # Update pipe's device
        pipe.device = torch.device(device)
        pipe.model.to(pipe.device)

        srt_sub = Subtitle("srt")
        vtt_sub = Subtitle("vtt")
        txt_sub = Subtitle("txt")

        files = []
        if multipleFiles:
            files += multipleFiles
        if urlData:
            files.append(urlData)
        if microphoneData:
            files.append(microphoneData)
        logging.info(files)

        generate_kwargs = {}
        if languageName != "Automatic Detection" and modelName.endswith(".en") == False:
            generate_kwargs["language"] = languageName
        if modelName.endswith(".en") == False:
            generate_kwargs["task"] = task

        files_out = []
        for file in progress.tqdm(files, desc="Working..."):
            start_time = time.time()
            logging.info(file)
            outputs = pipe(
                file,
                chunk_length_s=chunk_length_s,  # 30
                batch_size=batch_size,  # 24
                generate_kwargs=generate_kwargs,
                return_timestamps=True,
            )
            logging.debug(outputs)
            logging.info(print(f"transcribe: {time.time() - start_time} sec."))

            file_out = file.split('/')[-1]
            srt = srt_sub.get_subtitle(outputs["chunks"])
            vtt = vtt_sub.get_subtitle(outputs["chunks"])
            txt = txt_sub.get_subtitle(outputs["chunks"])
            write_file(file_out + ".srt", srt)
            write_file(file_out + ".vtt", vtt)
            write_file(file_out + ".txt", txt)
            files_out += [file_out + ".srt", file_out + ".vtt", file_out + ".txt"]

    progress(1, desc="Completed!")

    return files_out, vtt, txt


with gr.Blocks(title="Insanely Fast Whisper") as demo:
    description = "An opinionated CLI to transcribe Audio files w/ Whisper on-device! Powered by 🤗 Transformers, Optimum & flash-attn"
    article = "Read the [documentation here](https://github.com/Vaibhavs10/insanely-fast-whisper#cli-options)."
    whisper_models = [
        "openai/whisper-tiny.en",
        "openai/whisper-base.en",
        "openai/whisper-small.en", "distil-whisper/distil-small.en",
        "openai/whisper-medium.en", "distil-whisper/distil-medium.en",
        "openai/whisper-large-v3", "distil-whisper/distil-large-v3",
    ]
    waveform_options = gr.WaveformOptions(
        waveform_color="#01C6FF",
        waveform_progress_color="#0066B4",
        skip_length=2,
        show_controls=False,
    )

    simple_transcribe = gr.Interface(fn=transcribe_webui_simple_progress,
                                     description=description,
                                     article=article,
                                     inputs=[
                                         gr.Dropdown(choices=whisper_models, value="distil-whisper/distil-large-v3",
                                                     label="Model", info="Select whisper model", interactive=True),
                                         gr.Dropdown(choices=["English"], value="English", interactive=False, visible=False,
                                                     label="Language",
                                                     info="Select audio voice language", ),
                                         gr.Text(label="URL", info="(YouTube, etc.)", interactive=False, visible=False),
                                         gr.File(label="Upload Files", file_count="multiple", interactive=False, visible=False),
                                         gr.Audio(sources=["upload", "microphone", ], type="filepath", label="Input",
                                                  waveform_options=waveform_options),
                                         gr.Dropdown(choices=["transcribe", "translate"], label="Task",
                                                     value="transcribe", interactive=False, visible=False),
                                         gr.Checkbox(label='Flash', info='Use Flash Attention 2', interactive=False, visible=False),
                                         gr.Number(label='chunk_length_s', value=30, interactive=False, visible=False),
                                         gr.Number(label='batch_size', value=24, interactive=False, visible=False)
                                     ], outputs=[
                                         gr.File(label="Download"),
                                         gr.Text(label="Transcription"),
                                         gr.Text(label="Segments")
                                     ]
                                     )

if __name__ == "__main__":
    demo.launch()