Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,15 +8,15 @@ from transformers.utils import is_flash_attn_2_available
|
|
| 8 |
from languages import get_language_names
|
| 9 |
from subtitle_manager import Subtitle
|
| 10 |
|
| 11 |
-
|
| 12 |
logging.basicConfig(level=logging.INFO)
|
| 13 |
last_model = None
|
| 14 |
pipe = None
|
| 15 |
|
| 16 |
-
def write_file(output_file,subtitle):
|
| 17 |
with open(output_file, 'w', encoding='utf-8') as f:
|
| 18 |
f.write(subtitle)
|
| 19 |
|
|
|
|
| 20 |
def create_pipe(model, flash):
|
| 21 |
if torch.cuda.is_available():
|
| 22 |
device = "cuda:0"
|
|
@@ -55,8 +55,9 @@ def create_pipe(model, flash):
|
|
| 55 |
)
|
| 56 |
return pipe
|
| 57 |
|
|
|
|
| 58 |
def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleFiles, microphoneData, task, flash,
|
| 59 |
-
|
| 60 |
global last_model
|
| 61 |
global pipe
|
| 62 |
|
|
@@ -69,7 +70,7 @@ def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleF
|
|
| 69 |
logging.info(f"chunk_length_s: {chunk_length_s}")
|
| 70 |
logging.info(f"batch_size: {batch_size}")
|
| 71 |
|
| 72 |
-
if last_model
|
| 73 |
logging.info("first model")
|
| 74 |
progress(0.1, desc="Loading Model..")
|
| 75 |
pipe = create_pipe(modelName, flash)
|
|
@@ -88,7 +89,7 @@ def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleF
|
|
| 88 |
|
| 89 |
files = []
|
| 90 |
if multipleFiles:
|
| 91 |
-
files+=multipleFiles
|
| 92 |
if urlData:
|
| 93 |
files.append(urlData)
|
| 94 |
if microphoneData:
|
|
@@ -107,8 +108,8 @@ def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleF
|
|
| 107 |
logging.info(file)
|
| 108 |
outputs = pipe(
|
| 109 |
file,
|
| 110 |
-
chunk_length_s=chunk_length_s
|
| 111 |
-
batch_size=batch_size
|
| 112 |
generate_kwargs=generate_kwargs,
|
| 113 |
return_timestamps=True,
|
| 114 |
)
|
|
@@ -119,13 +120,13 @@ def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleF
|
|
| 119 |
srt = srt_sub.get_subtitle(outputs["chunks"])
|
| 120 |
vtt = vtt_sub.get_subtitle(outputs["chunks"])
|
| 121 |
txt = txt_sub.get_subtitle(outputs["chunks"])
|
| 122 |
-
write_file(file_out+".srt",srt)
|
| 123 |
-
write_file(file_out+".vtt",vtt)
|
| 124 |
-
write_file(file_out+".txt",txt)
|
| 125 |
-
files_out += [file_out+".srt", file_out+".vtt", file_out+".txt"]
|
| 126 |
|
| 127 |
progress(1, desc="Completed!")
|
| 128 |
-
|
| 129 |
return files_out, vtt, txt
|
| 130 |
|
| 131 |
|
|
@@ -142,7 +143,7 @@ with gr.Blocks(title="Insanely Fast Whisper") as demo:
|
|
| 142 |
"openai/whisper-large-v2", "distil-whisper/distil-large-v2",
|
| 143 |
"openai/whisper-large-v3", "distil-whisper/distil-large-v3", "xaviviro/whisper-large-v3-catalan-finetuned-v2",
|
| 144 |
]
|
| 145 |
-
waveform_options=gr.WaveformOptions(
|
| 146 |
waveform_color="#01C6FF",
|
| 147 |
waveform_progress_color="#0066B4",
|
| 148 |
skip_length=2,
|
|
@@ -150,25 +151,29 @@ with gr.Blocks(title="Insanely Fast Whisper") as demo:
|
|
| 150 |
)
|
| 151 |
|
| 152 |
simple_transcribe = gr.Interface(fn=transcribe_webui_simple_progress,
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
if __name__ == "__main__":
|
| 173 |
-
demo.launch()
|
| 174 |
-
|
|
|
|
| 8 |
from languages import get_language_names
|
| 9 |
from subtitle_manager import Subtitle
|
| 10 |
|
|
|
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
last_model = None
|
| 13 |
pipe = None
|
| 14 |
|
| 15 |
+
def write_file(output_file, subtitle):
|
| 16 |
with open(output_file, 'w', encoding='utf-8') as f:
|
| 17 |
f.write(subtitle)
|
| 18 |
|
| 19 |
+
@spaces.GPU
|
| 20 |
def create_pipe(model, flash):
|
| 21 |
if torch.cuda.is_available():
|
| 22 |
device = "cuda:0"
|
|
|
|
| 55 |
)
|
| 56 |
return pipe
|
| 57 |
|
| 58 |
+
@spaces.GPU
|
| 59 |
def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleFiles, microphoneData, task, flash,
|
| 60 |
+
chunk_length_s, batch_size, progress=gr.Progress()):
|
| 61 |
global last_model
|
| 62 |
global pipe
|
| 63 |
|
|
|
|
| 70 |
logging.info(f"chunk_length_s: {chunk_length_s}")
|
| 71 |
logging.info(f"batch_size: {batch_size}")
|
| 72 |
|
| 73 |
+
if last_model is None:
|
| 74 |
logging.info("first model")
|
| 75 |
progress(0.1, desc="Loading Model..")
|
| 76 |
pipe = create_pipe(modelName, flash)
|
|
|
|
| 89 |
|
| 90 |
files = []
|
| 91 |
if multipleFiles:
|
| 92 |
+
files += multipleFiles
|
| 93 |
if urlData:
|
| 94 |
files.append(urlData)
|
| 95 |
if microphoneData:
|
|
|
|
| 108 |
logging.info(file)
|
| 109 |
outputs = pipe(
|
| 110 |
file,
|
| 111 |
+
chunk_length_s=chunk_length_s, # 30
|
| 112 |
+
batch_size=batch_size, # 24
|
| 113 |
generate_kwargs=generate_kwargs,
|
| 114 |
return_timestamps=True,
|
| 115 |
)
|
|
|
|
| 120 |
srt = srt_sub.get_subtitle(outputs["chunks"])
|
| 121 |
vtt = vtt_sub.get_subtitle(outputs["chunks"])
|
| 122 |
txt = txt_sub.get_subtitle(outputs["chunks"])
|
| 123 |
+
write_file(file_out + ".srt", srt)
|
| 124 |
+
write_file(file_out + ".vtt", vtt)
|
| 125 |
+
write_file(file_out + ".txt", txt)
|
| 126 |
+
files_out += [file_out + ".srt", file_out + ".vtt", file_out + ".txt"]
|
| 127 |
|
| 128 |
progress(1, desc="Completed!")
|
| 129 |
+
|
| 130 |
return files_out, vtt, txt
|
| 131 |
|
| 132 |
|
|
|
|
| 143 |
"openai/whisper-large-v2", "distil-whisper/distil-large-v2",
|
| 144 |
"openai/whisper-large-v3", "distil-whisper/distil-large-v3", "xaviviro/whisper-large-v3-catalan-finetuned-v2",
|
| 145 |
]
|
| 146 |
+
waveform_options = gr.WaveformOptions(
|
| 147 |
waveform_color="#01C6FF",
|
| 148 |
waveform_progress_color="#0066B4",
|
| 149 |
skip_length=2,
|
|
|
|
| 151 |
)
|
| 152 |
|
| 153 |
simple_transcribe = gr.Interface(fn=transcribe_webui_simple_progress,
|
| 154 |
+
description=description,
|
| 155 |
+
article=article,
|
| 156 |
+
inputs=[
|
| 157 |
+
gr.Dropdown(choices=whisper_models, value="distil-whisper/distil-large-v2",
|
| 158 |
+
label="Model", info="Select whisper model", interactive=True, ),
|
| 159 |
+
gr.Dropdown(choices=["Automatic Detection"] + sorted(get_language_names()),
|
| 160 |
+
value="Automatic Detection", label="Language",
|
| 161 |
+
info="Select audio voice language", interactive=True, ),
|
| 162 |
+
gr.Text(label="URL", info="(YouTube, etc.)", interactive=True),
|
| 163 |
+
gr.File(label="Upload Files", file_count="multiple"),
|
| 164 |
+
gr.Audio(sources=["upload", "microphone", ], type="filepath", label="Input",
|
| 165 |
+
waveform_options=waveform_options),
|
| 166 |
+
gr.Dropdown(choices=["transcribe", "translate"], label="Task",
|
| 167 |
+
value="transcribe", interactive=True),
|
| 168 |
+
gr.Checkbox(label='Flash', info='Use Flash Attention 2'),
|
| 169 |
+
gr.Number(label='chunk_length_s', value=30, interactive=True),
|
| 170 |
+
gr.Number(label='batch_size', value=24, interactive=True)
|
| 171 |
+
], outputs=[
|
| 172 |
+
gr.File(label="Download"),
|
| 173 |
+
gr.Text(label="Transcription"),
|
| 174 |
+
gr.Text(label="Segments")
|
| 175 |
+
]
|
| 176 |
+
)
|
| 177 |
|
| 178 |
if __name__ == "__main__":
|
| 179 |
+
demo.launch()
|
|
|