Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -42,13 +42,20 @@ def create_pipe(model, flash):
|
|
42 |
)
|
43 |
return pipe, model # Return both pipe and model for later GPU switch
|
44 |
|
45 |
-
@spaces.GPU(duration=120)
|
46 |
def move_to_gpu(model):
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
return device
|
51 |
|
|
|
52 |
def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleFiles, microphoneData, task, flash,
|
53 |
chunk_length_s, batch_size, progress=gr.Progress()):
|
54 |
global last_model
|
@@ -77,54 +84,55 @@ def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleF
|
|
77 |
|
78 |
last_model = modelName
|
79 |
|
80 |
-
# Now move the model to GPU after the pipe is created
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
128 |
|
129 |
progress(1, desc="Completed!")
|
130 |
|
|
|
42 |
)
|
43 |
return pipe, model # Return both pipe and model for later GPU switch
|
44 |
|
|
|
45 |
def move_to_gpu(model):
|
46 |
+
if torch.cuda.is_available():
|
47 |
+
device = "cuda:0"
|
48 |
+
torch_dtype = torch.float16 # Use float16 precision on GPU
|
49 |
+
model.to(device, dtype=torch_dtype)
|
50 |
+
elif platform == "darwin":
|
51 |
+
device = "mps"
|
52 |
+
model.to(device)
|
53 |
+
else:
|
54 |
+
device = "cpu"
|
55 |
+
|
56 |
return device
|
57 |
|
58 |
+
@spaces.GPU
|
59 |
def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleFiles, microphoneData, task, flash,
|
60 |
chunk_length_s, batch_size, progress=gr.Progress()):
|
61 |
global last_model
|
|
|
84 |
|
85 |
last_model = modelName
|
86 |
|
87 |
+
# Now move the model to GPU after the pipe is created, within the function's context
|
88 |
+
with torch.inference_mode():
|
89 |
+
device = move_to_gpu(pipe.model)
|
90 |
+
|
91 |
+
# Update pipe's device
|
92 |
+
pipe.device = torch.device(device)
|
93 |
+
pipe.model.to(pipe.device)
|
94 |
+
|
95 |
+
srt_sub = Subtitle("srt")
|
96 |
+
vtt_sub = Subtitle("vtt")
|
97 |
+
txt_sub = Subtitle("txt")
|
98 |
+
|
99 |
+
files = []
|
100 |
+
if multipleFiles:
|
101 |
+
files += multipleFiles
|
102 |
+
if urlData:
|
103 |
+
files.append(urlData)
|
104 |
+
if microphoneData:
|
105 |
+
files.append(microphoneData)
|
106 |
+
logging.info(files)
|
107 |
+
|
108 |
+
generate_kwargs = {}
|
109 |
+
if languageName != "Automatic Detection" and modelName.endswith(".en") == False:
|
110 |
+
generate_kwargs["language"] = languageName
|
111 |
+
if modelName.endswith(".en") == False:
|
112 |
+
generate_kwargs["task"] = task
|
113 |
+
|
114 |
+
files_out = []
|
115 |
+
for file in progress.tqdm(files, desc="Working..."):
|
116 |
+
start_time = time.time()
|
117 |
+
logging.info(file)
|
118 |
+
outputs = pipe(
|
119 |
+
file,
|
120 |
+
chunk_length_s=chunk_length_s, # 30
|
121 |
+
batch_size=batch_size, # 24
|
122 |
+
generate_kwargs=generate_kwargs,
|
123 |
+
return_timestamps=True,
|
124 |
+
)
|
125 |
+
logging.debug(outputs)
|
126 |
+
logging.info(print(f"transcribe: {time.time() - start_time} sec."))
|
127 |
+
|
128 |
+
file_out = file.split('/')[-1]
|
129 |
+
srt = srt_sub.get_subtitle(outputs["chunks"])
|
130 |
+
vtt = vtt_sub.get_subtitle(outputs["chunks"])
|
131 |
+
txt = txt_sub.get_subtitle(outputs["chunks"])
|
132 |
+
write_file(file_out + ".srt", srt)
|
133 |
+
write_file(file_out + ".vtt", vtt)
|
134 |
+
write_file(file_out + ".txt", txt)
|
135 |
+
files_out += [file_out + ".srt", file_out + ".vtt", file_out + ".txt"]
|
136 |
|
137 |
progress(1, desc="Completed!")
|
138 |
|