File size: 8,826 Bytes
36dd82f
 
3f2cadc
 
 
36dd82f
3f2cadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36dd82f
 
3f2cadc
 
 
 
 
 
 
 
 
 
 
36dd82f
3f2cadc
36dd82f
 
3f2cadc
36dd82f
 
 
3f2cadc
36dd82f
 
3f2cadc
36dd82f
3f2cadc
 
 
 
 
36dd82f
3f2cadc
f05ca8c
3f2cadc
f05ca8c
3f2cadc
 
36dd82f
 
 
3f2cadc
 
36dd82f
3f2cadc
 
 
5813a90
3f2cadc
 
 
f05ca8c
3f2cadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36dd82f
3f2cadc
 
 
 
 
 
 
 
36dd82f
 
3f2cadc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36dd82f
 
 
 
 
 
 
 
 
 
 
 
 
 
3f2cadc
 
36dd82f
3f2cadc
 
 
 
 
 
 
 
36dd82f
3f2cadc
36dd82f
3f2cadc
 
 
 
 
 
 
 
 
 
36dd82f
3f2cadc
 
 
36dd82f
 
3f2cadc
 
 
 
 
 
 
 
 
 
 
 
36dd82f
 
3f2cadc
 
36dd82f
 
 
3f2cadc
 
36dd82f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import cv2
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
from moviepy.editor import *
import os
import torch
import openpifpaf

# Ensure NumPy is available
try:
    import numpy as np
except ImportError:
    os.system('pip install numpy')
    import numpy as np

# OpenPifPaf configuration
predictor = openpifpaf.Predictor(checkpoint='shufflenetv2k16')

def preprocess(image):
    input_size = (192, 256)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = cv2.resize(image, input_size)
    return image

def total_body_movement(current_poses, prev_poses):
    if not current_poses or not prev_poses:
        return 0
    total_movement = 0
    for current_pose in current_poses:
        for prev_pose in prev_poses:
            movement = np.sum(np.sqrt(np.sum((current_pose - prev_pose)**2, axis=1)))
            total_movement += movement
    return total_movement / (len(current_poses) * len(prev_poses))

def process_video(video_path, progress=gr.Progress(), batch_size=64):
    if video_path is None:
        return None, None, None, None, None, None, "Error: No video uploaded"

    if not os.path.exists(video_path):
        return None, None, None, None, None, None, f"Error: Video file not found at {video_path}"

    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return None, None, None, None, None, None, f"Error: Unable to open video file at {video_path}"

    original_fps = int(cap.get(cv2.CAP_PROP_FPS))
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    original_duration = frame_count / original_fps
    
    frame_interval = max(1, round(original_fps / 10))  # Process 10 frames per second
    
    body_movements = []
    time_points = []

    prev_poses = None
    frames = []
    frame_indices = []

    for frame in progress.tqdm(range(0, frame_count, frame_interval)):
        cap.set(cv2.CAP_PROP_POS_FRAMES, frame)
        ret, img = cap.read()
        if not ret:
            break
        frames.append(img)
        frame_indices.append(frame)

        if len(frames) == batch_size:
            process_batch(frames, frame_indices, prev_poses, body_movements, time_points, original_fps)
            frames = []

    # Process any remaining frames
    if frames:
        process_batch(frames, frame_indices, prev_poses, body_movements, time_points, original_fps)

    cap.release()

    fig, ax = plt.subplots(figsize=(10, 6), dpi=500)
    ax.plot(time_points, body_movements, "-", linewidth=0.5)
    ax.set_xlim(0, original_duration)
    ax.set_xlabel("Time")
    ax.set_ylabel("Body Movement")
    ax.set_title("Body Movement Analysis")

    num_labels = 50
    label_positions = np.linspace(0, original_duration, num_labels)
    label_texts = [f"{int(t//60):02d}:{int(t%60):02d}" for t in label_positions]
    ax.set_xticks(label_positions)
    ax.set_xticklabels(label_texts, rotation=90, ha='right')
    plt.tight_layout()

    return fig, ax, time_points, body_movements, video_path, original_duration, None

def process_batch(frames, frame_indices, prev_poses, body_movements, time_points, original_fps):
    batch_preds = predictor.numpy_images(frames)

    for i, (predictions, frame_index) in enumerate(zip(batch_preds, frame_indices)):
        pose_coords = [pred.data for pred in predictions]

        if prev_poses is not None:
            movement = total_body_movement(pose_coords, prev_poses)
            body_movements.append(movement)
        else:
            body_movements.append(0)
        
        prev_poses = pose_coords
        time_points.append(frame_index / original_fps)

def update_video(video_path, time):
    if video_path is None:
        return None

    if not os.path.exists(video_path):
        return None

    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return None

    original_fps = int(cap.get(cv2.CAP_PROP_FPS))
    frame_number = int(time * original_fps)
    cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
    ret, img = cap.read()
    cap.release()

    if not ret:
        return None

    predictions, _, _ = predictor.numpy_image(img)
    pose_coords = [pred.data for pred in predictions]

    for coords in pose_coords:
        for i in range(len(coords)):
            x, y = coords[i]
            if x > 0 and y > 0:
                cv2.circle(img, (int(x), int(y)), 3, (0, 255, 0), -1)
    
    for pred in predictions:
        skeleton = pred.data[:, :2]
        for i, j in pred.skeleton:
            if skeleton[i, 0] > 0 and skeleton[i, 1] > 0 and skeleton[j, 0] > 0 and skeleton[j, 1] > 0:
                cv2.line(img, (int(skeleton[i, 0]), int(skeleton[i, 1])), (int(skeleton[j, 0]), int(skeleton[j, 1])), (255, 0, 0), 2)

    return img

def update_graph(fig, ax, time_points, body_movements, current_time, video_duration):
    ax.clear()
    ax.plot(time_points, body_movements, "-", linewidth=0.5)
    ax.axvline(x=current_time, color='r', linestyle='--')
    
    minutes, seconds = divmod(int(current_time), 60)
    timecode = f"{minutes:02d}:{seconds:02d}"
    ax.text(current_time, ax.get_ylim()[1], timecode, 
            verticalalignment='top', horizontalalignment='right',
            color='r', fontweight='bold', bbox=dict(facecolor='white', edgecolor='none', alpha=0.7))
    
    ax.set_xlabel("Time")
    ax.set_ylabel("Body Movement")
    ax.set_title("Body Movement Analysis")
    
    num_labels = 80
    label_positions = np.linspace(0, video_duration, num_labels)
    label_texts = [f"{int(t//60):02d}:{int(t%60):02d}" for t in label_positions]
    ax.set_xticks(label_positions)
    ax.set_xticklabels(label_texts, rotation=90, ha='right')
    ax.set_xlim(0, video_duration)
    plt.tight_layout()
    return fig

def load_sample_frame(video_path):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return None
    ret, frame = cap.read()
    cap.release()
    if not ret:
        return None
    frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    return frame_rgb

def gradio_app():
    with gr.Blocks() as app:
        gr.Markdown("# Multi-Person Body Movement Analysis")
        
        video_input = gr.Video(label="Upload Video")
        graph_output = gr.Plot()
        time_slider = gr.Slider(label="Time (seconds)", minimum=0, maximum=100, step=0.1)
        video_output = gr.Image(label="Body Posture")
        
        with gr.Row():
            sample_video_frame = gr.Image(value=load_sample_frame("IL_Dancing_Sample.mp4"), label="Sample Video Frame")
            use_sample_button = gr.Button("Use Sample Video")
        
        error_output = gr.Textbox(label="Error Messages", visible=False)
        
        video_path = gr.State(None)
        fig_state = gr.State(None)
        ax_state = gr.State(None)
        time_points_state = gr.State(None)
        body_movements_state = gr.State(None)
        video_duration_state = gr.State(None)

        def process_and_update(video):
            fig, ax, time_points, body_movements, video_path_value, video_duration, error = process_video(video)
            if fig is not None:
                time_slider.maximum = video_duration
                error_output.visible = False
            else:
                error_output.visible = True
            return fig, video, error, video_path_value, fig, ax, time_points, body_movements, video_duration

        video_input.upload(process_and_update, 
                           inputs=video_input, 
                           outputs=[graph_output, video_output, error_output, video_path, 
                                    fig_state, ax_state, time_points_state, body_movements_state, video_duration_state])

        def update_video_and_graph(video_path_value, current_time, fig, ax, time_points, body_movements, video_duration):
            updated_frame = update_video(video_path_value, current_time)
            updated_fig = update_graph(fig, ax, time_points, body_movements, current_time, video_duration)
            return updated_frame, updated_fig

        time_slider.change(update_video_and_graph, 
                           inputs=[video_path, time_slider, fig_state, ax_state, time_points_state, body_movements_state, video_duration_state], 
                           outputs=[video_output, graph_output])

        def use_sample_video():
            sample_video_path = "IL_Dancing_Sample.mp4"
            return process_and_update(sample_video_path)

        use_sample_button.click(use_sample_video, 
                                inputs=None, 
                                outputs=[graph_output, video_output, error_output, video_path, 
                                         fig_state, ax_state, time_points_state, body_movements_state, video_duration_state])

    return app

if __name__ == "__main__":
    app = gradio_app()
    app.launch(share=True)