Update app.py
Browse files
app.py
CHANGED
@@ -1,95 +1,171 @@
|
|
1 |
-
import gradio as gr
|
2 |
import cv2
|
3 |
-
from PIL import Image, ImageDraw, ImageFont
|
4 |
-
import torch
|
5 |
-
from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
6 |
import numpy as np
|
|
|
|
|
|
|
7 |
import os
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
try:
|
27 |
-
font = ImageFont.truetype("arial.ttf", 15)
|
28 |
-
except IOError:
|
29 |
-
font = ImageFont.load_default()
|
30 |
-
|
31 |
-
i = 0
|
32 |
-
text = texts[i]
|
33 |
-
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
34 |
-
|
35 |
-
for box, score, label in zip(boxes, scores, labels):
|
36 |
-
if score.item() >= 0.25:
|
37 |
-
box = [round(i, 2) for i in box.tolist()]
|
38 |
-
object_label = text[label]
|
39 |
-
confidence = round(score.item(), 3)
|
40 |
-
annotation = f"{object_label}: {confidence}"
|
41 |
-
|
42 |
-
draw.rectangle(box, outline=color_map.get(object_label, "red"), width=2)
|
43 |
-
text_position = (box[0], box[1] - 10)
|
44 |
-
draw.text(text_position, annotation, fill="white", font=font)
|
45 |
-
|
46 |
return image
|
47 |
|
48 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
if video_path is None:
|
50 |
-
return None, "Error: No video uploaded"
|
51 |
|
52 |
if not os.path.exists(video_path):
|
53 |
-
return None, f"Error: Video file not found at {video_path}"
|
54 |
|
55 |
cap = cv2.VideoCapture(video_path)
|
56 |
if not cap.isOpened():
|
57 |
-
return None, f"Error: Unable to open video file at {video_path}"
|
58 |
|
59 |
-
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
60 |
original_fps = int(cap.get(cv2.CAP_PROP_FPS))
|
|
|
61 |
original_duration = frame_count / original_fps
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
66 |
-
out = cv2.VideoWriter(output_path, fourcc, output_fps, (int(cap.get(3)), int(cap.get(4))))
|
67 |
-
|
68 |
-
batch_size = 64
|
69 |
frames = []
|
|
|
70 |
|
71 |
-
for frame in progress.tqdm(range(frame_count)):
|
|
|
72 |
ret, img = cap.read()
|
73 |
if not ret:
|
74 |
break
|
|
|
|
|
75 |
|
76 |
-
if
|
77 |
-
|
|
|
78 |
|
79 |
-
|
80 |
-
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
cap.release()
|
90 |
-
out.release()
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
def load_sample_frame(video_path):
|
95 |
cap = cv2.VideoCapture(video_path)
|
@@ -104,35 +180,57 @@ def load_sample_frame(video_path):
|
|
104 |
|
105 |
def gradio_app():
|
106 |
with gr.Blocks() as app:
|
107 |
-
gr.Markdown("#
|
108 |
-
|
109 |
video_input = gr.Video(label="Upload Video")
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
error_output = gr.Textbox(label="Error Messages", visible=False)
|
113 |
-
|
114 |
-
use_sample_button = gr.Button("Use Sample Video")
|
115 |
-
|
116 |
video_path = gr.State(None)
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
122 |
error_output.visible = False
|
123 |
-
|
|
|
|
|
124 |
|
125 |
video_input.upload(process_and_update,
|
126 |
-
inputs=
|
127 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
def use_sample_video():
|
130 |
-
sample_video_path = "
|
131 |
-
return process_and_update(sample_video_path
|
132 |
|
133 |
use_sample_button.click(use_sample_video,
|
134 |
inputs=None,
|
135 |
-
outputs=[
|
|
|
136 |
|
137 |
return app
|
138 |
|
|
|
|
|
1 |
import cv2
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import gradio as gr
|
5 |
+
from moviepy.editor import *
|
6 |
import os
|
7 |
+
import torch
|
8 |
+
import openpifpaf
|
9 |
+
|
10 |
+
# Ensure NumPy is available
|
11 |
+
try:
|
12 |
+
import numpy as np
|
13 |
+
except ImportError:
|
14 |
+
os.system('pip install numpy')
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
# OpenPifPaf configuration
|
18 |
+
predictor = openpifpaf.Predictor(checkpoint='shufflenetv2k16')
|
19 |
+
|
20 |
+
def preprocess(image):
|
21 |
+
input_size = (192, 256)
|
22 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
23 |
+
image = cv2.resize(image, input_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
return image
|
25 |
|
26 |
+
def total_body_movement(current_poses, prev_poses):
|
27 |
+
if not current_poses or not prev_poses:
|
28 |
+
return 0
|
29 |
+
total_movement = 0
|
30 |
+
for current_pose in current_poses:
|
31 |
+
for prev_pose in prev_poses:
|
32 |
+
movement = np.sum(np.sqrt(np.sum((current_pose - prev_pose)**2, axis=1)))
|
33 |
+
total_movement += movement
|
34 |
+
return total_movement / (len(current_poses) * len(prev_poses))
|
35 |
+
|
36 |
+
def process_video(video_path, progress=gr.Progress(), batch_size=64):
|
37 |
if video_path is None:
|
38 |
+
return None, None, None, None, None, None, "Error: No video uploaded"
|
39 |
|
40 |
if not os.path.exists(video_path):
|
41 |
+
return None, None, None, None, None, None, f"Error: Video file not found at {video_path}"
|
42 |
|
43 |
cap = cv2.VideoCapture(video_path)
|
44 |
if not cap.isOpened():
|
45 |
+
return None, None, None, None, None, None, f"Error: Unable to open video file at {video_path}"
|
46 |
|
|
|
47 |
original_fps = int(cap.get(cv2.CAP_PROP_FPS))
|
48 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
49 |
original_duration = frame_count / original_fps
|
50 |
+
|
51 |
+
frame_interval = max(1, round(original_fps / 10)) # Process 10 frames per second
|
52 |
+
|
53 |
+
body_movements = []
|
54 |
+
time_points = []
|
55 |
|
56 |
+
prev_poses = None
|
|
|
|
|
|
|
|
|
57 |
frames = []
|
58 |
+
frame_indices = []
|
59 |
|
60 |
+
for frame in progress.tqdm(range(0, frame_count, frame_interval)):
|
61 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame)
|
62 |
ret, img = cap.read()
|
63 |
if not ret:
|
64 |
break
|
65 |
+
frames.append(img)
|
66 |
+
frame_indices.append(frame)
|
67 |
|
68 |
+
if len(frames) == batch_size:
|
69 |
+
process_batch(frames, frame_indices, prev_poses, body_movements, time_points, original_fps)
|
70 |
+
frames = []
|
71 |
|
72 |
+
# Process any remaining frames
|
73 |
+
if frames:
|
74 |
+
process_batch(frames, frame_indices, prev_poses, body_movements, time_points, original_fps)
|
75 |
|
76 |
+
cap.release()
|
77 |
+
|
78 |
+
fig, ax = plt.subplots(figsize=(10, 6), dpi=500)
|
79 |
+
ax.plot(time_points, body_movements, "-", linewidth=0.5)
|
80 |
+
ax.set_xlim(0, original_duration)
|
81 |
+
ax.set_xlabel("Time")
|
82 |
+
ax.set_ylabel("Body Movement")
|
83 |
+
ax.set_title("Body Movement Analysis")
|
84 |
+
|
85 |
+
num_labels = 50
|
86 |
+
label_positions = np.linspace(0, original_duration, num_labels)
|
87 |
+
label_texts = [f"{int(t//60):02d}:{int(t%60):02d}" for t in label_positions]
|
88 |
+
ax.set_xticks(label_positions)
|
89 |
+
ax.set_xticklabels(label_texts, rotation=90, ha='right')
|
90 |
+
plt.tight_layout()
|
91 |
+
|
92 |
+
return fig, ax, time_points, body_movements, video_path, original_duration, None
|
93 |
+
|
94 |
+
def process_batch(frames, frame_indices, prev_poses, body_movements, time_points, original_fps):
|
95 |
+
batch_preds = predictor.numpy_images(frames)
|
96 |
+
|
97 |
+
for i, (predictions, frame_index) in enumerate(zip(batch_preds, frame_indices)):
|
98 |
+
pose_coords = [pred.data for pred in predictions]
|
99 |
+
|
100 |
+
if prev_poses is not None:
|
101 |
+
movement = total_body_movement(pose_coords, prev_poses)
|
102 |
+
body_movements.append(movement)
|
103 |
+
else:
|
104 |
+
body_movements.append(0)
|
105 |
+
|
106 |
+
prev_poses = pose_coords
|
107 |
+
time_points.append(frame_index / original_fps)
|
108 |
+
|
109 |
+
def update_video(video_path, time):
|
110 |
+
if video_path is None:
|
111 |
+
return None
|
112 |
+
|
113 |
+
if not os.path.exists(video_path):
|
114 |
+
return None
|
115 |
|
116 |
+
cap = cv2.VideoCapture(video_path)
|
117 |
+
if not cap.isOpened():
|
118 |
+
return None
|
119 |
+
|
120 |
+
original_fps = int(cap.get(cv2.CAP_PROP_FPS))
|
121 |
+
frame_number = int(time * original_fps)
|
122 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
123 |
+
ret, img = cap.read()
|
124 |
cap.release()
|
|
|
125 |
|
126 |
+
if not ret:
|
127 |
+
return None
|
128 |
+
|
129 |
+
predictions, _, _ = predictor.numpy_image(img)
|
130 |
+
pose_coords = [pred.data for pred in predictions]
|
131 |
+
|
132 |
+
for coords in pose_coords:
|
133 |
+
for i in range(len(coords)):
|
134 |
+
x, y = coords[i]
|
135 |
+
if x > 0 and y > 0:
|
136 |
+
cv2.circle(img, (int(x), int(y)), 3, (0, 255, 0), -1)
|
137 |
+
|
138 |
+
for pred in predictions:
|
139 |
+
skeleton = pred.data[:, :2]
|
140 |
+
for i, j in pred.skeleton:
|
141 |
+
if skeleton[i, 0] > 0 and skeleton[i, 1] > 0 and skeleton[j, 0] > 0 and skeleton[j, 1] > 0:
|
142 |
+
cv2.line(img, (int(skeleton[i, 0]), int(skeleton[i, 1])), (int(skeleton[j, 0]), int(skeleton[j, 1])), (255, 0, 0), 2)
|
143 |
+
|
144 |
+
return img
|
145 |
+
|
146 |
+
def update_graph(fig, ax, time_points, body_movements, current_time, video_duration):
|
147 |
+
ax.clear()
|
148 |
+
ax.plot(time_points, body_movements, "-", linewidth=0.5)
|
149 |
+
ax.axvline(x=current_time, color='r', linestyle='--')
|
150 |
+
|
151 |
+
minutes, seconds = divmod(int(current_time), 60)
|
152 |
+
timecode = f"{minutes:02d}:{seconds:02d}"
|
153 |
+
ax.text(current_time, ax.get_ylim()[1], timecode,
|
154 |
+
verticalalignment='top', horizontalalignment='right',
|
155 |
+
color='r', fontweight='bold', bbox=dict(facecolor='white', edgecolor='none', alpha=0.7))
|
156 |
+
|
157 |
+
ax.set_xlabel("Time")
|
158 |
+
ax.set_ylabel("Body Movement")
|
159 |
+
ax.set_title("Body Movement Analysis")
|
160 |
+
|
161 |
+
num_labels = 80
|
162 |
+
label_positions = np.linspace(0, video_duration, num_labels)
|
163 |
+
label_texts = [f"{int(t//60):02d}:{int(t%60):02d}" for t in label_positions]
|
164 |
+
ax.set_xticks(label_positions)
|
165 |
+
ax.set_xticklabels(label_texts, rotation=90, ha='right')
|
166 |
+
ax.set_xlim(0, video_duration)
|
167 |
+
plt.tight_layout()
|
168 |
+
return fig
|
169 |
|
170 |
def load_sample_frame(video_path):
|
171 |
cap = cv2.VideoCapture(video_path)
|
|
|
180 |
|
181 |
def gradio_app():
|
182 |
with gr.Blocks() as app:
|
183 |
+
gr.Markdown("# Multi-Person Body Movement Analysis")
|
184 |
+
|
185 |
video_input = gr.Video(label="Upload Video")
|
186 |
+
graph_output = gr.Plot()
|
187 |
+
time_slider = gr.Slider(label="Time (seconds)", minimum=0, maximum=100, step=0.1)
|
188 |
+
video_output = gr.Image(label="Body Posture")
|
189 |
+
|
190 |
+
with gr.Row():
|
191 |
+
sample_video_frame = gr.Image(value=load_sample_frame("IL_Dancing_Sample.mp4"), label="Sample Video Frame")
|
192 |
+
use_sample_button = gr.Button("Use Sample Video")
|
193 |
+
|
194 |
error_output = gr.Textbox(label="Error Messages", visible=False)
|
195 |
+
|
|
|
|
|
196 |
video_path = gr.State(None)
|
197 |
+
fig_state = gr.State(None)
|
198 |
+
ax_state = gr.State(None)
|
199 |
+
time_points_state = gr.State(None)
|
200 |
+
body_movements_state = gr.State(None)
|
201 |
+
video_duration_state = gr.State(None)
|
202 |
+
|
203 |
+
def process_and_update(video):
|
204 |
+
fig, ax, time_points, body_movements, video_path_value, video_duration, error = process_video(video)
|
205 |
+
if fig is not None:
|
206 |
+
time_slider.maximum = video_duration
|
207 |
error_output.visible = False
|
208 |
+
else:
|
209 |
+
error_output.visible = True
|
210 |
+
return fig, video, error, video_path_value, fig, ax, time_points, body_movements, video_duration
|
211 |
|
212 |
video_input.upload(process_and_update,
|
213 |
+
inputs=video_input,
|
214 |
+
outputs=[graph_output, video_output, error_output, video_path,
|
215 |
+
fig_state, ax_state, time_points_state, body_movements_state, video_duration_state])
|
216 |
+
|
217 |
+
def update_video_and_graph(video_path_value, current_time, fig, ax, time_points, body_movements, video_duration):
|
218 |
+
updated_frame = update_video(video_path_value, current_time)
|
219 |
+
updated_fig = update_graph(fig, ax, time_points, body_movements, current_time, video_duration)
|
220 |
+
return updated_frame, updated_fig
|
221 |
+
|
222 |
+
time_slider.change(update_video_and_graph,
|
223 |
+
inputs=[video_path, time_slider, fig_state, ax_state, time_points_state, body_movements_state, video_duration_state],
|
224 |
+
outputs=[video_output, graph_output])
|
225 |
|
226 |
def use_sample_video():
|
227 |
+
sample_video_path = "IL_Dancing_Sample.mp4"
|
228 |
+
return process_and_update(sample_video_path)
|
229 |
|
230 |
use_sample_button.click(use_sample_video,
|
231 |
inputs=None,
|
232 |
+
outputs=[graph_output, video_output, error_output, video_path,
|
233 |
+
fig_state, ax_state, time_points_state, body_movements_state, video_duration_state])
|
234 |
|
235 |
return app
|
236 |
|