Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
+
import torch
|
5 |
+
from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Check if CUDA is available, otherwise use CPU
|
10 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
+
|
12 |
+
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
|
13 |
+
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
|
14 |
+
|
15 |
+
def detect_objects_in_frame(image, target):
|
16 |
+
draw = ImageDraw.Draw(image)
|
17 |
+
texts = [[target]]
|
18 |
+
inputs = processor(text=texts, images=image, return_tensors="pt").to(device)
|
19 |
+
outputs = model(**inputs)
|
20 |
+
|
21 |
+
target_sizes = torch.Tensor([image.size[::-1]])
|
22 |
+
results = processor.post_process_object_detection(outputs=outputs, threshold=0.1, target_sizes=target_sizes)
|
23 |
+
|
24 |
+
color_map = {target: "red"}
|
25 |
+
|
26 |
+
try:
|
27 |
+
font = ImageFont.truetype("arial.ttf", 15)
|
28 |
+
except IOError:
|
29 |
+
font = ImageFont.load_default()
|
30 |
+
|
31 |
+
i = 0
|
32 |
+
text = texts[i]
|
33 |
+
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
34 |
+
|
35 |
+
for box, score, label in zip(boxes, scores, labels):
|
36 |
+
if score.item() >= 0.25:
|
37 |
+
box = [round(i, 2) for i in box.tolist()]
|
38 |
+
object_label = text[label]
|
39 |
+
confidence = round(score.item(), 3)
|
40 |
+
annotation = f"{object_label}: {confidence}"
|
41 |
+
|
42 |
+
draw.rectangle(box, outline=color_map.get(object_label, "red"), width=2)
|
43 |
+
text_position = (box[0], box[1] - 10)
|
44 |
+
draw.text(text_position, annotation, fill="white", font=font)
|
45 |
+
|
46 |
+
return image
|
47 |
+
|
48 |
+
def process_video(video_path, target, progress=gr.Progress()):
|
49 |
+
if video_path is None:
|
50 |
+
return None, "Error: No video uploaded"
|
51 |
+
|
52 |
+
if not os.path.exists(video_path):
|
53 |
+
return None, f"Error: Video file not found at {video_path}"
|
54 |
+
|
55 |
+
cap = cv2.VideoCapture(video_path)
|
56 |
+
if not cap.isOpened():
|
57 |
+
return None, f"Error: Unable to open video file at {video_path}"
|
58 |
+
|
59 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
60 |
+
original_fps = int(cap.get(cv2.CAP_PROP_FPS))
|
61 |
+
original_duration = frame_count / original_fps
|
62 |
+
|
63 |
+
output_path = "output_video.mp4"
|
64 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
65 |
+
out = cv2.VideoWriter(output_path, fourcc, original_fps, (int(cap.get(3)), int(cap.get(4))))
|
66 |
+
|
67 |
+
for frame in progress.tqdm(range(frame_count)):
|
68 |
+
ret, img = cap.read()
|
69 |
+
if not ret:
|
70 |
+
break
|
71 |
+
|
72 |
+
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
73 |
+
annotated_img = detect_objects_in_frame(pil_img, target)
|
74 |
+
annotated_frame = cv2.cvtColor(np.array(annotated_img), cv2.COLOR_RGB2BGR)
|
75 |
+
out.write(annotated_frame)
|
76 |
+
|
77 |
+
cap.release()
|
78 |
+
out.release()
|
79 |
+
|
80 |
+
return output_path, None
|
81 |
+
|
82 |
+
def load_sample_frame(video_path):
|
83 |
+
cap = cv2.VideoCapture(video_path)
|
84 |
+
if not cap.isOpened():
|
85 |
+
return None
|
86 |
+
ret, frame = cap.read()
|
87 |
+
cap.release()
|
88 |
+
if not ret:
|
89 |
+
return None
|
90 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
91 |
+
return frame_rgb
|
92 |
+
|
93 |
+
def gradio_app():
|
94 |
+
with gr.Blocks() as app:
|
95 |
+
gr.Markdown("# Video Object Detection with Owlv2")
|
96 |
+
|
97 |
+
video_input = gr.Video(label="Upload Video")
|
98 |
+
target_input = gr.Textbox(label="Target Object")
|
99 |
+
output_video = gr.Video(label="Output Video")
|
100 |
+
error_output = gr.Textbox(label="Error Messages", visible=False)
|
101 |
+
sample_video_frame = gr.Image(value=load_sample_frame("IL_Dancing_Sample.mp4"), label="Sample Video Frame")
|
102 |
+
use_sample_button = gr.Button("Use Sample Video")
|
103 |
+
|
104 |
+
video_path = gr.State(None)
|
105 |
+
def process_and_update(video, target):
|
106 |
+
output_video_path, error = process_video(video, target)
|
107 |
+
if error:
|
108 |
+
error_output.visible = True
|
109 |
+
else:
|
110 |
+
error_output.visible = False
|
111 |
+
return output_video_path, error
|
112 |
+
|
113 |
+
video_input.upload(process_and_update,
|
114 |
+
inputs=[video_input, target_input],
|
115 |
+
outputs=[output_video, error_output])
|
116 |
+
|
117 |
+
def use_sample_video():
|
118 |
+
sample_video_path = "IL_Dancing_Sample.mp4"
|
119 |
+
return process_and_update(sample_video_path, "person")
|
120 |
+
|
121 |
+
use_sample_button.click(use_sample_video,
|
122 |
+
inputs=None,
|
123 |
+
outputs=[output_video, error_output])
|
124 |
+
|
125 |
+
return app
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
app = gradio_app()
|
129 |
+
app.launch(share=True)
|