|
import math |
|
import os |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from facenet_pytorch import InceptionResnetV1, MTCNN |
|
import tensorflow as tf |
|
import mediapipe as mp |
|
from sklearn.cluster import DBSCAN |
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler |
|
import pandas as pd |
|
import matplotlib |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
from matplotlib.patches import Rectangle |
|
from moviepy.editor import VideoFileClip |
|
from PIL import Image, ImageDraw, ImageFont |
|
import gradio as gr |
|
import tempfile |
|
import shutil |
|
import time |
|
|
|
|
|
matplotlib.rcParams['figure.dpi'] = 400 |
|
matplotlib.rcParams['savefig.dpi'] = 400 |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
FIXED_FPS = 5 |
|
|
|
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.95, 0.95, 0.95], min_face_size=80) |
|
model = InceptionResnetV1(pretrained='vggface2').eval().to(device) |
|
|
|
mp_face_mesh = mp.solutions.face_mesh |
|
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.8) |
|
|
|
mp_pose = mp.solutions.pose |
|
mp_drawing = mp.solutions.drawing_utils |
|
pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.8, min_tracking_confidence=0.8) |
|
|
|
def frame_to_timecode(frame_num, total_frames, duration): |
|
total_seconds = (frame_num / total_frames) * duration |
|
hours = int(total_seconds // 3600) |
|
minutes = int((total_seconds % 3600) // 60) |
|
seconds = int(total_seconds % 60) |
|
milliseconds = int((total_seconds - int(total_seconds)) * 1000) |
|
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" |
|
|
|
def seconds_to_timecode(seconds): |
|
hours = int(seconds // 3600) |
|
minutes = int((seconds % 3600) // 60) |
|
seconds = int(seconds % 60) |
|
return f"{hours:02d}:{minutes:02d}:{seconds:02d}" |
|
|
|
def timecode_to_seconds(timecode): |
|
h, m, s = map(int, timecode.split(':')) |
|
return h * 3600 + m * 60 + s |
|
|
|
def get_face_embedding(face_img): |
|
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 |
|
face_tensor = (face_tensor - 0.5) / 0.5 |
|
face_tensor = face_tensor.to(device) |
|
with torch.no_grad(): |
|
embedding = model(face_tensor) |
|
return embedding.cpu().numpy().flatten() |
|
|
|
def alignFace(img): |
|
img_raw = img.copy() |
|
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
if not results.multi_face_landmarks: |
|
return None |
|
landmarks = results.multi_face_landmarks[0].landmark |
|
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y], |
|
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y], |
|
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]]) |
|
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y], |
|
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y], |
|
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]]) |
|
left_eye_center = left_eye.mean(axis=0).astype(np.int32) |
|
right_eye_center = right_eye.mean(axis=0).astype(np.int32) |
|
dY = right_eye_center[1] - left_eye_center[1] |
|
dX = right_eye_center[0] - left_eye_center[0] |
|
angle = np.degrees(np.arctan2(dY, dX)) |
|
desired_angle = 0 |
|
angle_diff = desired_angle - angle |
|
height, width = img_raw.shape[:2] |
|
center = (width // 2, height // 2) |
|
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1) |
|
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height)) |
|
return new_img |
|
|
|
def calculate_posture_score(frame): |
|
image_height, image_width, _ = frame.shape |
|
results = pose.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) |
|
|
|
if not results.pose_landmarks: |
|
return None, None |
|
|
|
landmarks = results.pose_landmarks.landmark |
|
|
|
|
|
left_shoulder = landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value] |
|
right_shoulder = landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value] |
|
left_hip = landmarks[mp_pose.PoseLandmark.LEFT_HIP.value] |
|
right_hip = landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value] |
|
left_knee = landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value] |
|
right_knee = landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value] |
|
|
|
|
|
shoulder_angle = abs(math.degrees(math.atan2(right_shoulder.y - left_shoulder.y, right_shoulder.x - left_shoulder.x))) |
|
hip_angle = abs(math.degrees(math.atan2(right_hip.y - left_hip.y, right_hip.x - left_hip.x))) |
|
knee_angle = abs(math.degrees(math.atan2(right_knee.y - left_knee.y, right_knee.x - left_knee.x))) |
|
|
|
|
|
shoulder_hip_alignment = abs((left_shoulder.y + right_shoulder.y) / 2 - (left_hip.y + right_hip.y) / 2) |
|
hip_knee_alignment = abs((left_hip.y + right_hip.y) / 2 - (left_knee.y + right_knee.y) / 2) |
|
|
|
nose = landmarks[mp_pose.PoseLandmark.NOSE.value] |
|
left_ear = landmarks[mp_pose.PoseLandmark.LEFT_EAR.value] |
|
right_ear = landmarks[mp_pose.PoseLandmark.RIGHT_EAR.value] |
|
|
|
head_tilt = abs(math.degrees(math.atan2(right_ear.y - left_ear.y, right_ear.x - left_ear.x))) |
|
|
|
head_position = abs((nose.y - (left_shoulder.y + right_shoulder.y) / 2) / |
|
((left_shoulder.y + right_shoulder.y) / 2 - (left_hip.y + right_hip.y) / 2)) |
|
|
|
|
|
posture_score = ( |
|
(1 - abs(shoulder_angle - hip_angle) / 90) * 0.3 + |
|
(1 - abs(hip_angle - knee_angle) / 90) * 0.2 + |
|
(1 - shoulder_hip_alignment) * 0.1 + |
|
(1 - hip_knee_alignment) * 0.1 + |
|
(1 - abs(head_tilt - 90) / 90) * 0.15 + |
|
(1 - head_position) * 0.15 |
|
) |
|
|
|
return posture_score, results.pose_landmarks |
|
|
|
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None): |
|
os.makedirs(output_folder, exist_ok=True) |
|
clip = VideoFileClip(video_path) |
|
original_fps = clip.fps |
|
duration = clip.duration |
|
total_frames = int(duration * original_fps) |
|
step = max(1, original_fps / desired_fps) |
|
total_frames_to_extract = int(total_frames / step) |
|
|
|
frame_count = 0 |
|
for t in np.arange(0, duration, step / original_fps): |
|
frame = clip.get_frame(t) |
|
img = Image.fromarray(frame) |
|
img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg")) |
|
frame_count += 1 |
|
if progress_callback: |
|
progress = min(100, (frame_count / total_frames_to_extract) * 100) |
|
progress_callback(progress, f"Extracting frame") |
|
if frame_count >= total_frames_to_extract: |
|
break |
|
clip.close() |
|
return frame_count, original_fps |
|
|
|
def is_frontal_face(landmarks, threshold=40): |
|
nose_tip = landmarks[4] |
|
left_chin = landmarks[234] |
|
right_chin = landmarks[454] |
|
nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y] |
|
nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y] |
|
dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1] |
|
magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2) |
|
magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2) |
|
cos_angle = dot_product / (magnitude_left * magnitude_right) |
|
angle = math.acos(cos_angle) |
|
angle_degrees = math.degrees(angle) |
|
return abs(180 - angle_degrees) < threshold |
|
|
|
|
|
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size): |
|
embeddings_by_frame = {} |
|
emotions_by_frame = {} |
|
posture_scores_by_frame = {} |
|
posture_landmarks_by_frame = {} |
|
aligned_face_paths = [] |
|
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')]) |
|
|
|
for i in range(0, len(frame_files), batch_size): |
|
batch_files = frame_files[i:i + batch_size] |
|
batch_frames = [] |
|
batch_nums = [] |
|
|
|
for frame_file in batch_files: |
|
frame_num = int(frame_file.split('_')[1].split('.')[0]) |
|
frame_path = os.path.join(frames_folder, frame_file) |
|
frame = cv2.imread(frame_path) |
|
if frame is not None: |
|
batch_frames.append(frame) |
|
batch_nums.append(frame_num) |
|
|
|
if batch_frames: |
|
batch_boxes, batch_probs = mtcnn.detect(batch_frames) |
|
|
|
for j, (frame, frame_num, boxes, probs) in enumerate( |
|
zip(batch_frames, batch_nums, batch_boxes, batch_probs)): |
|
|
|
|
|
posture_score, posture_landmarks = calculate_posture_score(frame) |
|
posture_scores_by_frame[frame_num] = posture_score |
|
posture_landmarks_by_frame[frame_num] = posture_landmarks |
|
|
|
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99: |
|
x1, y1, x2, y2 = [int(b) for b in boxes[0]] |
|
face = frame[y1:y2, x1:x2] |
|
if face.size > 0: |
|
results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB)) |
|
if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark): |
|
|
|
|
|
aligned_face = face |
|
|
|
if aligned_face is not None: |
|
aligned_face_resized = cv2.resize(aligned_face, (160, 160)) |
|
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") |
|
cv2.imwrite(output_path, aligned_face_resized) |
|
aligned_face_paths.append(output_path) |
|
embedding = get_face_embedding(aligned_face_resized) |
|
embeddings_by_frame[frame_num] = embedding |
|
|
|
progress((i + len(batch_files)) / len(frame_files), |
|
f"Processing frames {i + 1} to {min(i + len(batch_files), len(frame_files))} of {len(frame_files)}") |
|
|
|
return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths |
|
|
|
|
|
def cluster_faces(embeddings): |
|
if len(embeddings) < 2: |
|
print("Not enough faces for clustering. Assigning all to one cluster.") |
|
return np.zeros(len(embeddings), dtype=int) |
|
|
|
X = np.stack(embeddings) |
|
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine') |
|
clusters = dbscan.fit_predict(X) |
|
|
|
if np.all(clusters == -1): |
|
print("DBSCAN assigned all to noise. Considering as one cluster.") |
|
return np.zeros(len(embeddings), dtype=int) |
|
|
|
return clusters |
|
|
|
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): |
|
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): |
|
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") |
|
os.makedirs(person_folder, exist_ok=True) |
|
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") |
|
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") |
|
shutil.copy(src, dst) |
|
|
|
def save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration): |
|
person_data = {} |
|
|
|
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): |
|
if cluster not in person_data: |
|
person_data[cluster] = [] |
|
person_data[cluster].append((frame_num, embedding)) |
|
|
|
largest_cluster = max(person_data, key=lambda k: len(person_data[k])) |
|
|
|
data = person_data[largest_cluster] |
|
data.sort(key=lambda x: x[0]) |
|
frames, embeddings = zip(*data) |
|
|
|
embeddings_array = np.array(embeddings) |
|
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) |
|
|
|
total_frames = max(frames) |
|
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames] |
|
|
|
df_data = { |
|
'Frame': frames, |
|
'Timecode': timecodes, |
|
'Embedding_Index': range(len(embeddings)) |
|
} |
|
|
|
for i in range(len(embeddings[0])): |
|
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings] |
|
|
|
df = pd.DataFrame(df_data) |
|
|
|
return df, largest_cluster |
|
|
|
class Autoencoder(nn.Module): |
|
def __init__(self, input_size): |
|
super(Autoencoder, self).__init__() |
|
self.encoder = nn.Sequential( |
|
nn.Linear(input_size, 256), |
|
nn.ReLU(), |
|
nn.Linear(256, 128), |
|
nn.ReLU(), |
|
nn.Linear(128, 64), |
|
nn.ReLU(), |
|
nn.Linear(64, 32) |
|
) |
|
self.decoder = nn.Sequential( |
|
nn.Linear(32, 64), |
|
nn.ReLU(), |
|
nn.Linear(64, 128), |
|
nn.ReLU(), |
|
nn.Linear(128, 256), |
|
nn.ReLU(), |
|
nn.Linear(256, input_size) |
|
) |
|
|
|
def forward(self, x): |
|
batch_size, seq_len, _ = x.size() |
|
x = x.view(batch_size * seq_len, -1) |
|
encoded = self.encoder(x) |
|
decoded = self.decoder(encoded) |
|
return decoded.view(batch_size, seq_len, -1) |
|
|
|
def determine_anomalies(mse_values, threshold): |
|
mean = np.mean(mse_values) |
|
std = np.std(mse_values) |
|
anomalies = mse_values > (mean + threshold * std) |
|
return anomalies |
|
|
|
def anomaly_detection(X_embeddings, X_posture, epochs=200, batch_size=8, patience=5): |
|
|
|
scaler_posture = MinMaxScaler() |
|
X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1)) |
|
|
|
|
|
X_embeddings = torch.FloatTensor(X_embeddings).to(device) |
|
if X_embeddings.dim() == 2: |
|
X_embeddings = X_embeddings.unsqueeze(0) |
|
|
|
|
|
X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device) |
|
if X_posture_scaled.dim() == 2: |
|
X_posture_scaled = X_posture_scaled.unsqueeze(0) |
|
|
|
model_embeddings = Autoencoder(input_size=X_embeddings.shape[2]).to(device) |
|
model_posture = Autoencoder(input_size=X_posture_scaled.shape[2]).to(device) |
|
|
|
criterion = nn.MSELoss() |
|
optimizer_embeddings = optim.Adam(model_embeddings.parameters()) |
|
optimizer_posture = optim.Adam(model_posture.parameters()) |
|
|
|
|
|
for epoch in range(epochs): |
|
for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings), |
|
(model_posture, optimizer_posture, X_posture_scaled)]: |
|
model.train() |
|
optimizer.zero_grad() |
|
output = model(X) |
|
loss = criterion(output, X) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
|
|
model_embeddings.eval() |
|
model_posture.eval() |
|
with torch.no_grad(): |
|
reconstructed_embeddings = model_embeddings(X_embeddings).cpu().numpy() |
|
reconstructed_posture = model_posture(X_posture_scaled).cpu().numpy() |
|
|
|
mse_embeddings = np.mean(np.power(X_embeddings.cpu().numpy() - reconstructed_embeddings, 2), axis=2).squeeze() |
|
mse_posture = np.mean(np.power(X_posture_scaled.cpu().numpy() - reconstructed_posture, 2), axis=2).squeeze() |
|
|
|
return mse_embeddings, mse_posture |
|
|
|
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4): |
|
plt.figure(figsize=(16, 8), dpi=400) |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
|
|
if 'Seconds' not in df.columns: |
|
df['Seconds'] = df['Timecode'].apply( |
|
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) |
|
|
|
|
|
min_length = min(len(df), len(mse_values)) |
|
df = df.iloc[:min_length] |
|
mse_values = mse_values[:min_length] |
|
|
|
|
|
mask = ~np.isnan(mse_values) |
|
df = df[mask] |
|
mse_values = mse_values[mask] |
|
|
|
mean = pd.Series(mse_values).rolling(window=10).mean() |
|
std = pd.Series(mse_values).rolling(window=10).std() |
|
median = np.median(mse_values) |
|
|
|
ax.scatter(df['Seconds'], mse_values, color=color, alpha=0.3, s=5) |
|
ax.plot(df['Seconds'], mean, color=color, linewidth=0.5) |
|
ax.fill_between(df['Seconds'], mean - std, mean + std, color=color, alpha=0.1) |
|
|
|
|
|
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline') |
|
|
|
|
|
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values) |
|
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}') |
|
ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red') |
|
|
|
anomalies = determine_anomalies(mse_values, anomaly_threshold) |
|
anomaly_frames = df['Frame'].iloc[anomalies].tolist() |
|
|
|
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5) |
|
|
|
anomaly_data = list(zip(df['Timecode'].iloc[anomalies], |
|
df['Seconds'].iloc[anomalies], |
|
mse_values[anomalies])) |
|
anomaly_data.sort(key=lambda x: x[1]) |
|
|
|
grouped_anomalies = [] |
|
current_group = [] |
|
for timecode, sec, mse in anomaly_data: |
|
if not current_group or sec - current_group[-1][1] <= time_threshold: |
|
current_group.append((timecode, sec, mse)) |
|
else: |
|
grouped_anomalies.append(current_group) |
|
current_group = [(timecode, sec, mse)] |
|
if current_group: |
|
grouped_anomalies.append(current_group) |
|
|
|
for group in grouped_anomalies: |
|
start_sec = group[0][1] |
|
end_sec = group[-1][1] |
|
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0], |
|
facecolor='red', alpha=0.2, zorder=1) |
|
ax.add_patch(rect) |
|
|
|
for group in grouped_anomalies: |
|
highest_mse_anomaly = max(group, key=lambda x: x[2]) |
|
timecode, sec, mse = highest_mse_anomaly |
|
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10), |
|
ha='center', fontsize=6, color='red') |
|
|
|
max_seconds = df['Seconds'].max() |
|
num_ticks = 100 |
|
tick_locations = np.linspace(0, max_seconds, num_ticks) |
|
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] |
|
|
|
ax.set_xticks(tick_locations) |
|
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) |
|
|
|
ax.set_xlabel('Timecode') |
|
ax.set_ylabel('Mean Squared Error') |
|
ax.set_title(title) |
|
|
|
ax.grid(True, linestyle='--', alpha=0.7) |
|
ax.legend() |
|
plt.tight_layout() |
|
plt.close() |
|
return fig, anomaly_frames |
|
|
|
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'): |
|
plt.figure(figsize=(16, 4), dpi=400) |
|
fig, ax = plt.subplots(figsize=(16, 4)) |
|
|
|
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7) |
|
ax.set_xlabel('Mean Squared Error') |
|
ax.set_ylabel('Number of Samples') |
|
ax.set_title(title) |
|
|
|
mean = np.mean(mse_values) |
|
std = np.std(mse_values) |
|
threshold = mean + anomaly_threshold * std |
|
|
|
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2) |
|
|
|
|
|
ax.annotate(f'Threshold: {anomaly_threshold:.1f}', |
|
xy=(threshold, ax.get_ylim()[0]), |
|
xytext=(0, -20), |
|
textcoords='offset points', |
|
ha='center', va='top', |
|
bbox=dict(boxstyle='round,pad=0.5', fc='white', ec='none', alpha=0.7), |
|
color='red') |
|
|
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
|
|
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=4): |
|
plt.figure(figsize=(16, 8), dpi=400) |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
|
|
df['Seconds'] = df['Timecode'].apply( |
|
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) |
|
|
|
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None] |
|
posture_frames, posture_scores = zip(*posture_data) |
|
|
|
|
|
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores}) |
|
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner') |
|
|
|
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5) |
|
mean = posture_df['Score'].rolling(window=10).mean() |
|
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5) |
|
|
|
ax.set_xlabel('Timecode') |
|
ax.set_ylabel('Posture Score') |
|
ax.set_title("Body Posture Over Time") |
|
|
|
ax.grid(True, linestyle='--', alpha=0.7) |
|
|
|
max_seconds = df['Seconds'].max() |
|
num_ticks = 80 |
|
tick_locations = np.linspace(0, max_seconds, num_ticks) |
|
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] |
|
|
|
ax.set_xticks(tick_locations) |
|
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) |
|
|
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
|
|
def plot_mse_heatmap(mse_values, title, df): |
|
plt.figure(figsize=(20, 5), dpi=400) |
|
fig, ax = plt.subplots(figsize=(20, 5)) |
|
|
|
|
|
mse_2d = mse_values.reshape(1, -1) |
|
|
|
|
|
sns.heatmap(mse_2d, cmap='YlOrRd', cbar_kws={'label': 'MSE'}, ax=ax) |
|
|
|
|
|
num_ticks = 60 |
|
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int) |
|
tick_labels = [df['Timecode'].iloc[i] for i in tick_locations] |
|
|
|
ax.set_xticks(tick_locations) |
|
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top') |
|
|
|
ax.set_title(title) |
|
|
|
|
|
ax.set_yticks([]) |
|
|
|
plt.tight_layout() |
|
plt.close() |
|
return fig |
|
|
|
def draw_pose_landmarks(frame, landmarks): |
|
annotated_frame = frame.copy() |
|
|
|
body_landmarks = [ |
|
mp_pose.PoseLandmark.NOSE, |
|
mp_pose.PoseLandmark.LEFT_SHOULDER, |
|
mp_pose.PoseLandmark.RIGHT_SHOULDER, |
|
mp_pose.PoseLandmark.LEFT_EAR, |
|
mp_pose.PoseLandmark.RIGHT_EAR, |
|
mp_pose.PoseLandmark.LEFT_ELBOW, |
|
mp_pose.PoseLandmark.RIGHT_ELBOW, |
|
mp_pose.PoseLandmark.LEFT_WRIST, |
|
mp_pose.PoseLandmark.RIGHT_WRIST, |
|
mp_pose.PoseLandmark.LEFT_HIP, |
|
mp_pose.PoseLandmark.RIGHT_HIP, |
|
mp_pose.PoseLandmark.LEFT_KNEE, |
|
mp_pose.PoseLandmark.RIGHT_KNEE, |
|
mp_pose.PoseLandmark.LEFT_ANKLE, |
|
mp_pose.PoseLandmark.RIGHT_ANKLE |
|
] |
|
|
|
|
|
body_connections = [ |
|
(mp_pose.PoseLandmark.LEFT_EAR, mp_pose.PoseLandmark.LEFT_SHOULDER), |
|
(mp_pose.PoseLandmark.RIGHT_EAR, mp_pose.PoseLandmark.RIGHT_SHOULDER), |
|
(mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.LEFT_SHOULDER), |
|
(mp_pose.PoseLandmark.NOSE, mp_pose.PoseLandmark.RIGHT_SHOULDER), |
|
(mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.RIGHT_SHOULDER), |
|
(mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.LEFT_ELBOW), |
|
(mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.RIGHT_ELBOW), |
|
(mp_pose.PoseLandmark.LEFT_ELBOW, mp_pose.PoseLandmark.LEFT_WRIST), |
|
(mp_pose.PoseLandmark.RIGHT_ELBOW, mp_pose.PoseLandmark.RIGHT_WRIST), |
|
(mp_pose.PoseLandmark.LEFT_SHOULDER, mp_pose.PoseLandmark.LEFT_HIP), |
|
(mp_pose.PoseLandmark.RIGHT_SHOULDER, mp_pose.PoseLandmark.RIGHT_HIP), |
|
(mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.RIGHT_HIP), |
|
(mp_pose.PoseLandmark.LEFT_HIP, mp_pose.PoseLandmark.LEFT_KNEE), |
|
(mp_pose.PoseLandmark.RIGHT_HIP, mp_pose.PoseLandmark.RIGHT_KNEE), |
|
(mp_pose.PoseLandmark.LEFT_KNEE, mp_pose.PoseLandmark.LEFT_ANKLE), |
|
(mp_pose.PoseLandmark.RIGHT_KNEE, mp_pose.PoseLandmark.RIGHT_ANKLE) |
|
] |
|
|
|
|
|
for landmark in body_landmarks: |
|
if landmark in landmarks.landmark: |
|
lm = landmarks.landmark[landmark] |
|
h, w, _ = annotated_frame.shape |
|
cx, cy = int(lm.x * w), int(lm.y * h) |
|
cv2.circle(annotated_frame, (cx, cy), 5, (245, 117, 66), -1) |
|
|
|
|
|
for connection in body_connections: |
|
start_lm = landmarks.landmark[connection[0]] |
|
end_lm = landmarks.landmark[connection[1]] |
|
h, w, _ = annotated_frame.shape |
|
start_point = (int(start_lm.x * w), int(start_lm.y * h)) |
|
end_point = (int(end_lm.x * w), int(end_lm.y * h)) |
|
cv2.line(annotated_frame, start_point, end_point, (245, 66, 230), 2) |
|
|
|
|
|
left_ear = landmarks.landmark[mp_pose.PoseLandmark.LEFT_EAR] |
|
right_ear = landmarks.landmark[mp_pose.PoseLandmark.RIGHT_EAR] |
|
nose = landmarks.landmark[mp_pose.PoseLandmark.NOSE] |
|
|
|
h, w, _ = annotated_frame.shape |
|
left_ear_point = (int(left_ear.x * w), int(left_ear.y * h)) |
|
right_ear_point = (int(right_ear.x * w), int(right_ear.y * h)) |
|
nose_point = (int(nose.x * w), int(nose.y * h)) |
|
|
|
|
|
cv2.line(annotated_frame, left_ear_point, right_ear_point, (0, 255, 0), 2) |
|
|
|
|
|
left_shoulder = landmarks.landmark[mp_pose.PoseLandmark.LEFT_SHOULDER] |
|
right_shoulder = landmarks.landmark[mp_pose.PoseLandmark.RIGHT_SHOULDER] |
|
shoulder_mid_x = (left_shoulder.x + right_shoulder.x) / 2 |
|
shoulder_mid_y = (left_shoulder.y + right_shoulder.y) / 2 |
|
shoulder_mid_point = (int(shoulder_mid_x * w), int(shoulder_mid_y * h)) |
|
cv2.line(annotated_frame, nose_point, shoulder_mid_point, (0, 255, 0), 2) |
|
|
|
return annotated_frame |
|
|
|
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=500): |
|
face_samples = {"most_frequent": [], "others": []} |
|
for cluster_folder in sorted(os.listdir(organized_faces_folder)): |
|
if cluster_folder.startswith("person_"): |
|
person_folder = os.path.join(organized_faces_folder, cluster_folder) |
|
face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')]) |
|
if face_files: |
|
cluster_id = int(cluster_folder.split('_')[1]) |
|
if cluster_id == largest_cluster: |
|
for i, sample in enumerate(face_files[:max_samples]): |
|
face_path = os.path.join(person_folder, sample) |
|
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg") |
|
face_img = cv2.imread(face_path) |
|
if face_img is not None: |
|
small_face = cv2.resize(face_img, (160, 160)) |
|
cv2.imwrite(output_path, small_face) |
|
face_samples["most_frequent"].append(output_path) |
|
if len(face_samples["most_frequent"]) >= max_samples: |
|
break |
|
else: |
|
remaining_samples = max_samples - len(face_samples["others"]) |
|
if remaining_samples > 0: |
|
for i, sample in enumerate(face_files[:remaining_samples]): |
|
face_path = os.path.join(person_folder, sample) |
|
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg") |
|
face_img = cv2.imread(face_path) |
|
if face_img is not None: |
|
small_face = cv2.resize(face_img, (160, 160)) |
|
cv2.imwrite(output_path, small_face) |
|
face_samples["others"].append(output_path) |
|
if len(face_samples["others"]) >= max_samples: |
|
break |
|
return face_samples |
|
|
|
|
|
def process_video(video_path, anomaly_threshold, desired_fps, progress=gr.Progress()): |
|
start_time = time.time() |
|
output_folder = "output" |
|
os.makedirs(output_folder, exist_ok=True) |
|
batch_size = 16 |
|
|
|
GRAPH_COLORS = { |
|
'facial_embeddings': 'navy', |
|
'body_posture': 'purple' |
|
} |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') |
|
organized_faces_folder = os.path.join(temp_dir, 'organized_faces') |
|
os.makedirs(aligned_faces_folder, exist_ok=True) |
|
os.makedirs(organized_faces_folder, exist_ok=True) |
|
|
|
clip = VideoFileClip(video_path) |
|
video_duration = clip.duration |
|
clip.close() |
|
|
|
progress(0, "Starting frame extraction") |
|
frames_folder = os.path.join(temp_dir, 'extracted_frames') |
|
|
|
def extraction_progress(percent, message): |
|
progress(percent / 100, f"Extracting frames") |
|
|
|
frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress) |
|
|
|
progress(1, "Frame extraction complete") |
|
progress(0.3, "Processing frames") |
|
embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths = process_frames( |
|
frames_folder, aligned_faces_folder, |
|
frame_count, |
|
progress, batch_size) |
|
|
|
if not aligned_face_paths: |
|
raise ValueError("No faces were extracted from the video.") |
|
|
|
progress(0.6, "Clustering faces") |
|
embeddings = [embedding for _, embedding in embeddings_by_frame.items()] |
|
clusters = cluster_faces(embeddings) |
|
num_clusters = len(set(clusters)) |
|
|
|
progress(0.7, "Organizing faces") |
|
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) |
|
|
|
progress(0.8, "Saving person data") |
|
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps, |
|
original_fps, temp_dir, video_duration) |
|
|
|
|
|
df['Seconds'] = df['Timecode'].apply( |
|
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) |
|
|
|
progress(0.85, "Getting face samples") |
|
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster) |
|
|
|
progress(0.9, "Performing anomaly detection") |
|
embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')] |
|
|
|
X_embeddings = df[embedding_columns].values |
|
|
|
try: |
|
X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']]) |
|
X_posture = X_posture[X_posture != None].reshape(-1, 1) |
|
|
|
|
|
if len(X_posture) == 0: |
|
raise ValueError("No valid posture data found") |
|
|
|
mse_embeddings, mse_posture = anomaly_detection(X_embeddings, X_posture, batch_size=batch_size) |
|
|
|
progress(0.95, "Generating plots") |
|
mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features", |
|
color=GRAPH_COLORS['facial_embeddings'], |
|
anomaly_threshold=anomaly_threshold) |
|
|
|
mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features", |
|
anomaly_threshold, color=GRAPH_COLORS['facial_embeddings']) |
|
|
|
mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture", |
|
color=GRAPH_COLORS['body_posture'], |
|
anomaly_threshold=anomaly_threshold) |
|
|
|
mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture", |
|
anomaly_threshold, color=GRAPH_COLORS['body_posture']) |
|
|
|
mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df) |
|
mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df) |
|
|
|
except Exception as e: |
|
print(f"Error details: {str(e)}") |
|
import traceback |
|
traceback.print_exc() |
|
return (f"Error in video processing: {str(e)}",) + (None,) * 14 |
|
|
|
progress(1.0, "Preparing results") |
|
results = f"Number of persons detected: {num_clusters}\n\n" |
|
results += "Breakdown:\n" |
|
for cluster_id in range(num_clusters): |
|
face_count = len([c for c in clusters if c == cluster_id]) |
|
results += f"Person {cluster_id + 1}: {face_count} face frames\n" |
|
|
|
end_time = time.time() |
|
execution_time = end_time - start_time |
|
|
|
def add_timecode_to_image(image, timecode): |
|
img_pil = Image.fromarray(image) |
|
draw = ImageDraw.Draw(img_pil) |
|
font = ImageFont.truetype("arial.ttf", 15) |
|
draw.text((10, 10), timecode, (255, 0, 0), font=font) |
|
return np.array(img_pil) |
|
|
|
|
|
anomaly_faces_embeddings = [] |
|
for frame in anomaly_frames_embeddings: |
|
face_path = os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg") |
|
if os.path.exists(face_path): |
|
face_img = cv2.imread(face_path) |
|
if face_img is not None: |
|
face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB) |
|
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0] |
|
face_img_with_timecode = add_timecode_to_image(face_img, timecode) |
|
anomaly_faces_embeddings.append(face_img_with_timecode) |
|
|
|
anomaly_frames_posture_images = [] |
|
for frame in anomaly_frames_posture: |
|
frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg") |
|
if os.path.exists(frame_path): |
|
frame_img = cv2.imread(frame_path) |
|
if frame_img is not None: |
|
frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB) |
|
pose_results = pose.process(frame_img) |
|
if pose_results.pose_landmarks: |
|
frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks) |
|
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0] |
|
frame_img_with_timecode = add_timecode_to_image(frame_img, timecode) |
|
anomaly_frames_posture_images.append(frame_img_with_timecode) |
|
|
|
return ( |
|
execution_time, |
|
results, |
|
df, |
|
mse_embeddings, |
|
mse_posture, |
|
mse_plot_embeddings, |
|
mse_histogram_embeddings, |
|
mse_plot_posture, |
|
mse_histogram_posture, |
|
mse_heatmap_embeddings, |
|
mse_heatmap_posture, |
|
face_samples["most_frequent"], |
|
face_samples["others"], |
|
anomaly_faces_embeddings, |
|
anomaly_frames_posture_images, |
|
aligned_faces_folder, |
|
frames_folder |
|
) |
|
|
|
|
|
with gr.Blocks() as iface: |
|
gr.Markdown(""" |
|
# Facial Expression and Body Language Anomaly Detection |
|
|
|
This application analyzes videos to detect anomalies in facial features and body language. |
|
It processes the video frames to extract facial embeddings and body posture, |
|
then uses machine learning techniques to identify unusual patterns or deviations from the norm. |
|
|
|
For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection) |
|
""") |
|
|
|
with gr.Row(): |
|
video_input = gr.Video() |
|
|
|
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold") |
|
process_btn = gr.Button("Process Video") |
|
progress_bar = gr.Progress() |
|
execution_time = gr.Number(label="Execution Time (seconds)") |
|
|
|
with gr.Group(visible=False) as results_group: |
|
results_text = gr.TextArea(label="Anomaly Detection Results", lines=4) |
|
|
|
with gr.Tab("Facial Features"): |
|
mse_features_plot = gr.Plot(label="MSE: Facial Features") |
|
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features") |
|
mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features") |
|
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto") |
|
|
|
with gr.Tab("Body Posture"): |
|
mse_posture_plot = gr.Plot(label="MSE: Body Posture") |
|
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture") |
|
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture") |
|
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto") |
|
|
|
with gr.Tab("Face Samples"): |
|
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples (Target)", columns=6, rows=2, height="auto") |
|
face_samples_others = gr.Gallery(label="Other Persons Samples", columns=6, rows=1, height="auto") |
|
|
|
|
|
df_store = gr.State() |
|
mse_features_store = gr.State() |
|
mse_posture_store = gr.State() |
|
aligned_faces_folder_store = gr.State() |
|
frames_folder_store = gr.State() |
|
mse_heatmap_embeddings_store = gr.State() |
|
mse_heatmap_posture_store = gr.State() |
|
|
|
def process_and_show_completion(video_input_path, anomaly_threshold_input): |
|
try: |
|
print("Starting video processing...") |
|
results = process_video(video_input_path, anomaly_threshold_input, FIXED_FPS, progress=progress_bar) |
|
print("Video processing completed.") |
|
|
|
if isinstance(results[0], str) and results[0].startswith("Error"): |
|
print(f"Error occurred: {results[0]}") |
|
return [results[0]] + [None] * 18 |
|
|
|
exec_time, results_summary, df, mse_embeddings, mse_posture, \ |
|
mse_plot_embeddings, mse_histogram_embeddings, \ |
|
mse_plot_posture, mse_histogram_posture, \ |
|
mse_heatmap_embeddings, mse_heatmap_posture, \ |
|
face_samples_frequent, face_samples_other, \ |
|
anomaly_faces_embeddings, anomaly_frames_posture_images, \ |
|
aligned_faces_folder, frames_folder = results |
|
|
|
|
|
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] |
|
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] |
|
|
|
|
|
face_samples_frequent = [Image.open(path) for path in face_samples_frequent] |
|
face_samples_other = [Image.open(path) for path in face_samples_other] |
|
|
|
output = [ |
|
exec_time, results_summary, |
|
df, mse_embeddings, mse_posture, |
|
mse_plot_embeddings, mse_plot_posture, |
|
mse_histogram_embeddings, mse_histogram_posture, |
|
mse_heatmap_embeddings, mse_heatmap_posture, |
|
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil, |
|
face_samples_frequent, face_samples_other, |
|
aligned_faces_folder, frames_folder, |
|
mse_embeddings, mse_posture |
|
] |
|
|
|
return output |
|
|
|
except Exception as e: |
|
error_message = f"An error occurred: {str(e)}" |
|
print(error_message) |
|
import traceback |
|
traceback.print_exc() |
|
return [error_message] + [None] * 18 |
|
|
|
process_btn.click( |
|
process_and_show_completion, |
|
inputs=[video_input, anomaly_threshold], |
|
outputs=[ |
|
execution_time, results_text, df_store, |
|
mse_features_store, mse_posture_store, |
|
mse_features_plot, mse_posture_plot, |
|
mse_features_hist, mse_posture_hist, |
|
mse_features_heatmap, mse_posture_heatmap, |
|
anomaly_frames_features, anomaly_frames_posture, |
|
face_samples_most_frequent, face_samples_others, |
|
aligned_faces_folder_store, frames_folder_store, |
|
mse_heatmap_embeddings_store, mse_heatmap_posture_store |
|
] |
|
).then( |
|
lambda: gr.Group(visible=True), |
|
inputs=None, |
|
outputs=[results_group] |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |