Spaces:
Runtime error
Runtime error
import matplotlib.pyplot as plt | |
from mpl_toolkits.mplot3d import Axes3D | |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas | |
import matplotlib.colors as mcolors | |
from matplotlib.colors import LinearSegmentedColormap | |
import seaborn as sns | |
import numpy as np | |
import pandas as pd | |
import cv2 | |
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip, concatenate_videoclips | |
from moviepy.video.fx.all import resize | |
from moviepy.video.io.bindings import mplfig_to_npimage | |
from PIL import Image, ImageDraw, ImageFont | |
from matplotlib.patches import Rectangle | |
from utils import seconds_to_timecode | |
from anomaly_detection import determine_anomalies | |
from scipy import interpolate | |
import librosa | |
import librosa.display | |
import gradio as gr | |
import os | |
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4): | |
plt.figure(figsize=(16, 8), dpi=300) | |
fig, ax = plt.subplots(figsize=(16, 8)) | |
if 'Seconds' not in df.columns: | |
df['Seconds'] = df['Timecode'].apply( | |
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
# Ensure df and mse_values have the same length and remove NaN values | |
min_length = min(len(df), len(mse_values)) | |
df = df.iloc[:min_length].copy() | |
mse_values = mse_values[:min_length] | |
# Remove NaN values and create a mask for valid data | |
valid_mask = ~np.isnan(mse_values) | |
df = df[valid_mask] | |
mse_values = mse_values[valid_mask] | |
# Function to identify continuous segments | |
def get_continuous_segments(seconds, values, max_gap=1): | |
segments = [] | |
current_segment = [] | |
for i, (sec, val) in enumerate(zip(seconds, values)): | |
if not current_segment or (sec - current_segment[-1][0] <= max_gap): | |
current_segment.append((sec, val)) | |
else: | |
segments.append(current_segment) | |
current_segment = [(sec, val)] | |
if current_segment: | |
segments.append(current_segment) | |
return segments | |
# Get continuous segments | |
segments = get_continuous_segments(df['Seconds'], mse_values) | |
# Plot each segment separately | |
for segment in segments: | |
segment_seconds, segment_mse = zip(*segment) | |
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5) | |
# Calculate and plot rolling mean and std for this segment | |
if len(segment) > 1: # Only if there's more than one point in the segment | |
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse}) | |
segment_df = segment_df.sort_values('Seconds') | |
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean() | |
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std() | |
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5) | |
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1) | |
median = np.median(mse_values) | |
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline') | |
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values) | |
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Anomaly Threshold') | |
ax.text(ax.get_xlim()[1], threshold, f'Anomaly Threshold', verticalalignment='center', horizontalalignment='left', color='red') | |
anomalies = determine_anomalies(mse_values, anomaly_threshold) | |
anomaly_frames = df['Frame'].iloc[anomalies].tolist() | |
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5) | |
anomaly_data = list(zip(df['Timecode'].iloc[anomalies], | |
df['Seconds'].iloc[anomalies], | |
mse_values[anomalies])) | |
anomaly_data.sort(key=lambda x: x[1]) | |
max_seconds = df['Seconds'].max() | |
num_ticks = 80 | |
tick_locations = np.linspace(0, max_seconds, num_ticks) | |
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] | |
ax.set_xticks(tick_locations) | |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) | |
ax.set_xlabel('Timecode') | |
ax.set_ylabel('Mean Squared Error') | |
ax.set_title(title) | |
ax.grid(True, linestyle='--', alpha=0.7) | |
ax.legend() | |
plt.tight_layout() | |
plt.close() | |
return fig, anomaly_frames | |
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'): | |
plt.figure(figsize=(16, 3), dpi=300) | |
fig, ax = plt.subplots(figsize=(16, 3)) | |
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7) | |
ax.set_xlabel('Mean Squared Error') | |
ax.set_ylabel('Number of Frames') | |
ax.set_title(title) | |
mean = np.mean(mse_values) | |
std = np.std(mse_values) | |
threshold = mean + anomaly_threshold * std | |
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2) | |
plt.tight_layout() | |
plt.close() | |
return fig | |
def plot_mse_heatmap(mse_values, title, df): | |
plt.figure(figsize=(20, 3), dpi=300) | |
fig, ax = plt.subplots(figsize=(20, 3)) | |
# Reshape MSE values to 2D array for heatmap | |
mse_2d = mse_values.reshape(1, -1) | |
# Create heatmap | |
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax) | |
# Set x-axis ticks to timecodes | |
num_ticks = min(60, len(mse_values)) | |
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int) | |
# Ensure tick_locations are within bounds | |
tick_locations = tick_locations[tick_locations < len(df)] | |
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations] | |
ax.set_xticks(tick_locations) | |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top') | |
ax.set_title(title) | |
# Remove y-axis labels | |
ax.set_yticks([]) | |
plt.tight_layout() | |
plt.close() | |
return fig | |
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3): | |
plt.figure(figsize=(16, 8), dpi=300) | |
fig, ax = plt.subplots(figsize=(16, 8)) | |
df['Seconds'] = df['Timecode'].apply( | |
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None] | |
posture_frames, posture_scores = zip(*posture_data) | |
# Create a new dataframe for posture data | |
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores}) | |
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner') | |
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5) | |
mean = posture_df['Score'].rolling(window=10).mean() | |
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5) | |
ax.set_xlabel('Timecode') | |
ax.set_ylabel('Posture Score') | |
ax.set_title("Body Posture Over Time") | |
ax.grid(True, linestyle='--', alpha=0.7) | |
max_seconds = df['Seconds'].max() | |
num_ticks = 80 | |
tick_locations = np.linspace(0, max_seconds, num_ticks) | |
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations] | |
ax.set_xticks(tick_locations) | |
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6) | |
plt.tight_layout() | |
plt.close() | |
return fig | |
def plot_stacked_mse_heatmaps(mse_face, mse_posture, mse_voice, df, title="Combined MSE Heatmaps"): | |
plt.figure(figsize=(20, 6), dpi=300) | |
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(20, 8), sharex=True, gridspec_kw={'height_ratios': [1, 1, 1.2], 'hspace': 0}) | |
# Face heatmap | |
sns.heatmap(mse_face.reshape(1, -1), cmap='Reds', cbar=False, ax=ax1, xticklabels=False, yticklabels=False) | |
ax1.set_ylabel('Face', rotation=0, ha='right', va='center') | |
ax1.yaxis.set_label_coords(-0.01, 0.5) | |
# Posture heatmap | |
sns.heatmap(mse_posture.reshape(1, -1), cmap='Reds', cbar=False, ax=ax2, xticklabels=False, yticklabels=False) | |
ax2.set_ylabel('Posture', rotation=0, ha='right', va='center') | |
ax2.yaxis.set_label_coords(-0.01, 0.5) | |
# Voice heatmap | |
sns.heatmap(mse_voice.reshape(1, -1), cmap='Reds', cbar=False, ax=ax3, yticklabels=False) | |
ax3.set_ylabel('Voice', rotation=0, ha='right', va='center') | |
ax3.yaxis.set_label_coords(-0.01, 0.5) | |
# Set x-axis ticks to timecodes for the bottom subplot | |
num_ticks = min(60, len(mse_voice)) | |
tick_locations = np.linspace(0, len(mse_voice) - 1, num_ticks).astype(int) | |
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations] | |
ax3.set_xticks(tick_locations) | |
ax3.set_xticklabels(tick_labels, rotation=90, ha='center', va='top') | |
# Remove spines | |
for ax in [ax1, ax2, ax3]: | |
ax.spines['top'].set_visible(False) | |
ax.spines['right'].set_visible(False) | |
ax.spines['bottom'].set_visible(False) | |
ax.spines['left'].set_visible(False) | |
plt.suptitle(title) | |
plt.tight_layout() | |
plt.close() | |
return fig | |
def plot_audio_waveform(audio_path, title="Audio Waveform"): | |
# Load the audio file | |
y, sr = librosa.load(audio_path) | |
# Create the plot | |
plt.figure(figsize=(20, 4)) | |
librosa.display.waveshow(y, sr=sr) | |
# Set the x-axis to display timecodes | |
max_time = librosa.get_duration(y=y, sr=sr) | |
x_ticks = np.arange(0, max_time, max_time/10) # 10 ticks | |
x_labels = [f"{int(t//3600):02d}:{int((t%3600)//60):02d}:{int(t%60):02d}" for t in x_ticks] | |
plt.xticks(x_ticks, x_labels, rotation=45) | |
plt.title(title) | |
plt.xlabel("Time") | |
plt.ylabel("Amplitude") | |
plt.tight_layout() | |
return plt.gcf() | |