File size: 1,750 Bytes
a4db1a6
 
 
 
 
b568300
a4db1a6
 
 
 
 
d811c94
a4db1a6
 
 
 
b568300
a4db1a6
 
 
b568300
a4db1a6
 
 
 
 
 
 
b568300
a4db1a6
 
 
 
b568300
a4db1a6
d811c94
a4db1a6
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import moviepy.editor as mp
from pyannote.audio import Pipeline
import torch
import torchaudio
from pyannote.core import Segment

def extract_audio_from_video(video_path):
    video = mp.VideoFileClip(video_path)
    audio_path = video_path.rsplit('.', 1)[0] + '.wav'
    video.audio.write_audiofile(audio_path)
    return audio_path

def diarize_speakers(audio_path):
    pipeline = Pipeline.from_pretrained("pyannote/[email protected]", use_auth_token="YOUR_HF_TOKEN")
    diarization = pipeline(audio_path)
    return diarization

def get_speaker_embeddings(audio_path, diarization, model):
    waveform, sample_rate = torchaudio.load(audio_path)
    embeddings = []

    for turn, _, speaker in diarization.itertracks(yield_label=True):
        start = int(turn.start * sample_rate)
        end = int(turn.end * sample_rate)
        
        segment = waveform[:, start:end]
        if segment.shape[1] == 0:
            continue

        with torch.no_grad():
            embedding = model({"waveform": segment, "sample_rate": sample_rate})
        
        embeddings.append({"time": turn.start, "embedding": embedding.squeeze().cpu().numpy(), "speaker": speaker})

    return embeddings

def align_voice_embeddings(voice_embeddings, frame_count, fps):
    aligned_embeddings = []
    current_embedding_index = 0
    
    for frame in range(frame_count):
        frame_time = frame / fps
        
        while (current_embedding_index < len(voice_embeddings) - 1 and 
               voice_embeddings[current_embedding_index + 1]["time"] <= frame_time):
            current_embedding_index += 1
        
        aligned_embeddings.append(voice_embeddings[current_embedding_index]["embedding"])
    
    return np.array(aligned_embeddings)