Update voice_analysis.py
Browse files- voice_analysis.py +36 -28
voice_analysis.py
CHANGED
@@ -1,40 +1,48 @@
|
|
1 |
-
import torch
|
2 |
import numpy as np
|
3 |
-
from speechbrain.pretrained import EncoderClassifier
|
4 |
-
from pydub import AudioSegment
|
5 |
-
from sklearn.cluster import DBSCAN
|
6 |
import librosa
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
segments = [
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
print("Not enough voice segments for clustering. Assigning all to one cluster.")
|
26 |
-
return np.zeros(len(
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
clusters = dbscan.fit_predict(X)
|
31 |
|
32 |
if np.all(clusters == -1):
|
33 |
print("DBSCAN assigned all to noise. Considering as one cluster.")
|
34 |
-
return np.zeros(len(
|
35 |
|
36 |
return clusters
|
37 |
|
38 |
-
def get_most_frequent_voice(
|
39 |
largest_cluster = max(set(clusters), key=list(clusters).count)
|
40 |
-
return [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
|
|
|
|
|
|
2 |
import librosa
|
3 |
+
from sklearn.cluster import DBSCAN
|
4 |
+
from pydub import AudioSegment
|
5 |
|
6 |
+
def extract_voice_features(audio_path, segment_duration=1000):
|
7 |
+
# Load the audio file
|
8 |
+
y, sr = librosa.load(audio_path)
|
9 |
+
|
10 |
+
# Extract MFCC features
|
11 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
12 |
+
|
13 |
+
# Segment the MFCCs
|
14 |
+
segment_length = int(segment_duration * sr / 1000)
|
15 |
+
num_segments = len(y) // segment_length
|
16 |
+
|
17 |
+
segments = []
|
18 |
+
for i in range(num_segments):
|
19 |
+
start = i * segment_length
|
20 |
+
end = start + segment_length
|
21 |
+
segment = mfccs[:, start:end]
|
22 |
+
segments.append(np.mean(segment, axis=1))
|
23 |
+
|
24 |
+
return np.array(segments)
|
25 |
+
|
26 |
+
def cluster_voices(features):
|
27 |
+
if len(features) < 2:
|
28 |
print("Not enough voice segments for clustering. Assigning all to one cluster.")
|
29 |
+
return np.zeros(len(features), dtype=int)
|
30 |
|
31 |
+
dbscan = DBSCAN(eps=0.5, min_samples=5, metric='euclidean')
|
32 |
+
clusters = dbscan.fit_predict(features)
|
|
|
33 |
|
34 |
if np.all(clusters == -1):
|
35 |
print("DBSCAN assigned all to noise. Considering as one cluster.")
|
36 |
+
return np.zeros(len(features), dtype=int)
|
37 |
|
38 |
return clusters
|
39 |
|
40 |
+
def get_most_frequent_voice(features, clusters):
|
41 |
largest_cluster = max(set(clusters), key=list(clusters).count)
|
42 |
+
return features[clusters == largest_cluster]
|
43 |
+
|
44 |
+
def process_audio(audio_path, segment_duration=1000):
|
45 |
+
features = extract_voice_features(audio_path, segment_duration)
|
46 |
+
clusters = cluster_voices(features)
|
47 |
+
most_frequent_voice = get_most_frequent_voice(features, clusters)
|
48 |
+
return most_frequent_voice, features, clusters
|